Cargando…

The photoprotection mechanism in the black–brown pigment eumelanin

The natural black–brown pigment eumelanin protects humans from high-energy UV photons by absorbing and rapidly dissipating their energy before proteins and DNA are damaged. The extremely weak fluorescence of eumelanin points toward nonradiative relaxation on the timescale of picoseconds or shorter....

Descripción completa

Detalles Bibliográficos
Autores principales: Ilina, Aleksandra, Thorn, Karen E., Hume, Paul A., Wagner, Isabella, Tamming, Ronnie R., Sutton, Joshua J., Gordon, Keith C., Andreassend, Sarah K., Chen, Kai, Hodgkiss, Justin M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618045/
https://www.ncbi.nlm.nih.gov/pubmed/36227945
http://dx.doi.org/10.1073/pnas.2212343119
_version_ 1784820967272349696
author Ilina, Aleksandra
Thorn, Karen E.
Hume, Paul A.
Wagner, Isabella
Tamming, Ronnie R.
Sutton, Joshua J.
Gordon, Keith C.
Andreassend, Sarah K.
Chen, Kai
Hodgkiss, Justin M.
author_facet Ilina, Aleksandra
Thorn, Karen E.
Hume, Paul A.
Wagner, Isabella
Tamming, Ronnie R.
Sutton, Joshua J.
Gordon, Keith C.
Andreassend, Sarah K.
Chen, Kai
Hodgkiss, Justin M.
author_sort Ilina, Aleksandra
collection PubMed
description The natural black–brown pigment eumelanin protects humans from high-energy UV photons by absorbing and rapidly dissipating their energy before proteins and DNA are damaged. The extremely weak fluorescence of eumelanin points toward nonradiative relaxation on the timescale of picoseconds or shorter. However, the extreme chemical and physical complexity of eumelanin masks its photoprotection mechanism. We sought to determine the electronic and structural relaxation pathways in eumelanin using three complementary ultrafast optical spectroscopy methods: fluorescence, transient absorption, and stimulated Raman spectroscopies. We show that photoexcitation of chromophores across the UV–visible spectrum rapidly generates a distribution of visible excitation energies via ultrafast internal conversion among neighboring coupled chromophores, and then all these excitations relax on a timescale of ∼4 ps without transferring their energy to other chromophores. Moreover, these picosecond dynamics are shared by the monomeric building block, 5,6-dihydroxyindole-2-carboxylic acid. Through a series of solvent and pH-dependent measurements complemented by quantum chemical modeling, we show that these ultrafast dynamics are consistent with the partial excited-state proton transfer from the catechol hydroxy groups to the solvent. The use of this multispectroscopic approach allows the minimal functional unit in eumelanin and the role of exciton coupling and excited-state proton transfer to be determined, and ultimately reveals the mechanism of photoprotection in eumelanin. This knowledge has potential for use in the design of new soft optical components and organic sunscreens.
format Online
Article
Text
id pubmed-9618045
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-96180452023-04-13 The photoprotection mechanism in the black–brown pigment eumelanin Ilina, Aleksandra Thorn, Karen E. Hume, Paul A. Wagner, Isabella Tamming, Ronnie R. Sutton, Joshua J. Gordon, Keith C. Andreassend, Sarah K. Chen, Kai Hodgkiss, Justin M. Proc Natl Acad Sci U S A Physical Sciences The natural black–brown pigment eumelanin protects humans from high-energy UV photons by absorbing and rapidly dissipating their energy before proteins and DNA are damaged. The extremely weak fluorescence of eumelanin points toward nonradiative relaxation on the timescale of picoseconds or shorter. However, the extreme chemical and physical complexity of eumelanin masks its photoprotection mechanism. We sought to determine the electronic and structural relaxation pathways in eumelanin using three complementary ultrafast optical spectroscopy methods: fluorescence, transient absorption, and stimulated Raman spectroscopies. We show that photoexcitation of chromophores across the UV–visible spectrum rapidly generates a distribution of visible excitation energies via ultrafast internal conversion among neighboring coupled chromophores, and then all these excitations relax on a timescale of ∼4 ps without transferring their energy to other chromophores. Moreover, these picosecond dynamics are shared by the monomeric building block, 5,6-dihydroxyindole-2-carboxylic acid. Through a series of solvent and pH-dependent measurements complemented by quantum chemical modeling, we show that these ultrafast dynamics are consistent with the partial excited-state proton transfer from the catechol hydroxy groups to the solvent. The use of this multispectroscopic approach allows the minimal functional unit in eumelanin and the role of exciton coupling and excited-state proton transfer to be determined, and ultimately reveals the mechanism of photoprotection in eumelanin. This knowledge has potential for use in the design of new soft optical components and organic sunscreens. National Academy of Sciences 2022-10-13 2022-10-25 /pmc/articles/PMC9618045/ /pubmed/36227945 http://dx.doi.org/10.1073/pnas.2212343119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Ilina, Aleksandra
Thorn, Karen E.
Hume, Paul A.
Wagner, Isabella
Tamming, Ronnie R.
Sutton, Joshua J.
Gordon, Keith C.
Andreassend, Sarah K.
Chen, Kai
Hodgkiss, Justin M.
The photoprotection mechanism in the black–brown pigment eumelanin
title The photoprotection mechanism in the black–brown pigment eumelanin
title_full The photoprotection mechanism in the black–brown pigment eumelanin
title_fullStr The photoprotection mechanism in the black–brown pigment eumelanin
title_full_unstemmed The photoprotection mechanism in the black–brown pigment eumelanin
title_short The photoprotection mechanism in the black–brown pigment eumelanin
title_sort photoprotection mechanism in the black–brown pigment eumelanin
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618045/
https://www.ncbi.nlm.nih.gov/pubmed/36227945
http://dx.doi.org/10.1073/pnas.2212343119
work_keys_str_mv AT ilinaaleksandra thephotoprotectionmechanismintheblackbrownpigmenteumelanin
AT thornkarene thephotoprotectionmechanismintheblackbrownpigmenteumelanin
AT humepaula thephotoprotectionmechanismintheblackbrownpigmenteumelanin
AT wagnerisabella thephotoprotectionmechanismintheblackbrownpigmenteumelanin
AT tammingronnier thephotoprotectionmechanismintheblackbrownpigmenteumelanin
AT suttonjoshuaj thephotoprotectionmechanismintheblackbrownpigmenteumelanin
AT gordonkeithc thephotoprotectionmechanismintheblackbrownpigmenteumelanin
AT andreassendsarahk thephotoprotectionmechanismintheblackbrownpigmenteumelanin
AT chenkai thephotoprotectionmechanismintheblackbrownpigmenteumelanin
AT hodgkissjustinm thephotoprotectionmechanismintheblackbrownpigmenteumelanin
AT ilinaaleksandra photoprotectionmechanismintheblackbrownpigmenteumelanin
AT thornkarene photoprotectionmechanismintheblackbrownpigmenteumelanin
AT humepaula photoprotectionmechanismintheblackbrownpigmenteumelanin
AT wagnerisabella photoprotectionmechanismintheblackbrownpigmenteumelanin
AT tammingronnier photoprotectionmechanismintheblackbrownpigmenteumelanin
AT suttonjoshuaj photoprotectionmechanismintheblackbrownpigmenteumelanin
AT gordonkeithc photoprotectionmechanismintheblackbrownpigmenteumelanin
AT andreassendsarahk photoprotectionmechanismintheblackbrownpigmenteumelanin
AT chenkai photoprotectionmechanismintheblackbrownpigmenteumelanin
AT hodgkissjustinm photoprotectionmechanismintheblackbrownpigmenteumelanin