Cargando…
Multiple forms of working memory emerge from synapse–astrocyte interactions in a neuron–glia network model
Persistent activity in populations of neurons, time-varying activity across a neural population, or activity-silent mechanisms carried out by hidden internal states of the neural population have been proposed as different mechanisms of working memory (WM). Whether these mechanisms could be mutually...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618090/ https://www.ncbi.nlm.nih.gov/pubmed/36256810 http://dx.doi.org/10.1073/pnas.2207912119 |
_version_ | 1784820979142230016 |
---|---|
author | De Pittà, Maurizio Brunel, Nicolas |
author_facet | De Pittà, Maurizio Brunel, Nicolas |
author_sort | De Pittà, Maurizio |
collection | PubMed |
description | Persistent activity in populations of neurons, time-varying activity across a neural population, or activity-silent mechanisms carried out by hidden internal states of the neural population have been proposed as different mechanisms of working memory (WM). Whether these mechanisms could be mutually exclusive or occur in the same neuronal circuit remains, however, elusive, and so do their biophysical underpinnings. While WM is traditionally regarded to depend purely on neuronal mechanisms, cortical networks also include astrocytes that can modulate neural activity. We propose and investigate a network model that includes both neurons and glia and show that glia–synapse interactions can lead to multiple stable states of synaptic transmission. Depending on parameters, these interactions can lead in turn to distinct patterns of network activity that can serve as substrates for WM. |
format | Online Article Text |
id | pubmed-9618090 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-96180902023-04-18 Multiple forms of working memory emerge from synapse–astrocyte interactions in a neuron–glia network model De Pittà, Maurizio Brunel, Nicolas Proc Natl Acad Sci U S A Biological Sciences Persistent activity in populations of neurons, time-varying activity across a neural population, or activity-silent mechanisms carried out by hidden internal states of the neural population have been proposed as different mechanisms of working memory (WM). Whether these mechanisms could be mutually exclusive or occur in the same neuronal circuit remains, however, elusive, and so do their biophysical underpinnings. While WM is traditionally regarded to depend purely on neuronal mechanisms, cortical networks also include astrocytes that can modulate neural activity. We propose and investigate a network model that includes both neurons and glia and show that glia–synapse interactions can lead to multiple stable states of synaptic transmission. Depending on parameters, these interactions can lead in turn to distinct patterns of network activity that can serve as substrates for WM. National Academy of Sciences 2022-10-18 2022-10-25 /pmc/articles/PMC9618090/ /pubmed/36256810 http://dx.doi.org/10.1073/pnas.2207912119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences De Pittà, Maurizio Brunel, Nicolas Multiple forms of working memory emerge from synapse–astrocyte interactions in a neuron–glia network model |
title | Multiple forms of working memory emerge from synapse–astrocyte interactions in a neuron–glia network model |
title_full | Multiple forms of working memory emerge from synapse–astrocyte interactions in a neuron–glia network model |
title_fullStr | Multiple forms of working memory emerge from synapse–astrocyte interactions in a neuron–glia network model |
title_full_unstemmed | Multiple forms of working memory emerge from synapse–astrocyte interactions in a neuron–glia network model |
title_short | Multiple forms of working memory emerge from synapse–astrocyte interactions in a neuron–glia network model |
title_sort | multiple forms of working memory emerge from synapse–astrocyte interactions in a neuron–glia network model |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618090/ https://www.ncbi.nlm.nih.gov/pubmed/36256810 http://dx.doi.org/10.1073/pnas.2207912119 |
work_keys_str_mv | AT depittamaurizio multipleformsofworkingmemoryemergefromsynapseastrocyteinteractionsinaneuronglianetworkmodel AT brunelnicolas multipleformsofworkingmemoryemergefromsynapseastrocyteinteractionsinaneuronglianetworkmodel |