Cargando…
Exploring canyons in glassy energy landscapes using metadynamics
The complex physics of glass-forming systems is controlled by the structure of the low-energy portions of their potential energy landscapes. Here we report that a modified metadynamics algorithm efficiently explores and samples low-energy regions of such high-dimensional landscapes. In the energy la...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618120/ https://www.ncbi.nlm.nih.gov/pubmed/36256806 http://dx.doi.org/10.1073/pnas.2210535119 |
_version_ | 1784820982356115456 |
---|---|
author | Thirumalaiswamy, Amruthesh Riggleman, Robert A. Crocker, John C. |
author_facet | Thirumalaiswamy, Amruthesh Riggleman, Robert A. Crocker, John C. |
author_sort | Thirumalaiswamy, Amruthesh |
collection | PubMed |
description | The complex physics of glass-forming systems is controlled by the structure of the low-energy portions of their potential energy landscapes. Here we report that a modified metadynamics algorithm efficiently explores and samples low-energy regions of such high-dimensional landscapes. In the energy landscape for a model foam, our algorithm finds and descends meandering canyons in the landscape, which contain dense clusters of energy minima along their floors. Similar canyon structures in the energy landscapes of two model glass formers—hard sphere fluids and the Kob–Andersen glass—allow us to reach high densities and low energies, respectively. In the hard sphere system, fluid configurations are found to form continuous regions that cover the canyon floors up to densities well above the jamming transition. For the Kob–Andersen glass former, our technique samples low-energy states with modest computational effort, with the lowest energies found approaching the predicted Kauzmann limit. |
format | Online Article Text |
id | pubmed-9618120 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-96181202023-04-18 Exploring canyons in glassy energy landscapes using metadynamics Thirumalaiswamy, Amruthesh Riggleman, Robert A. Crocker, John C. Proc Natl Acad Sci U S A Physical Sciences The complex physics of glass-forming systems is controlled by the structure of the low-energy portions of their potential energy landscapes. Here we report that a modified metadynamics algorithm efficiently explores and samples low-energy regions of such high-dimensional landscapes. In the energy landscape for a model foam, our algorithm finds and descends meandering canyons in the landscape, which contain dense clusters of energy minima along their floors. Similar canyon structures in the energy landscapes of two model glass formers—hard sphere fluids and the Kob–Andersen glass—allow us to reach high densities and low energies, respectively. In the hard sphere system, fluid configurations are found to form continuous regions that cover the canyon floors up to densities well above the jamming transition. For the Kob–Andersen glass former, our technique samples low-energy states with modest computational effort, with the lowest energies found approaching the predicted Kauzmann limit. National Academy of Sciences 2022-10-18 2022-10-25 /pmc/articles/PMC9618120/ /pubmed/36256806 http://dx.doi.org/10.1073/pnas.2210535119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Thirumalaiswamy, Amruthesh Riggleman, Robert A. Crocker, John C. Exploring canyons in glassy energy landscapes using metadynamics |
title | Exploring canyons in glassy energy landscapes using metadynamics |
title_full | Exploring canyons in glassy energy landscapes using metadynamics |
title_fullStr | Exploring canyons in glassy energy landscapes using metadynamics |
title_full_unstemmed | Exploring canyons in glassy energy landscapes using metadynamics |
title_short | Exploring canyons in glassy energy landscapes using metadynamics |
title_sort | exploring canyons in glassy energy landscapes using metadynamics |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618120/ https://www.ncbi.nlm.nih.gov/pubmed/36256806 http://dx.doi.org/10.1073/pnas.2210535119 |
work_keys_str_mv | AT thirumalaiswamyamruthesh exploringcanyonsinglassyenergylandscapesusingmetadynamics AT rigglemanroberta exploringcanyonsinglassyenergylandscapesusingmetadynamics AT crockerjohnc exploringcanyonsinglassyenergylandscapesusingmetadynamics |