Cargando…

The temporal trend of cause-specific mortality: comparing Estonia and Lithuania, 2001 – 2019

BACKGROUND: Despite being two Baltic countries with similar histories, Estonia and Lithuania have diverged in life expectancy trends in recent years. We investigated this divergence by comparing cause-specific mortality trends. METHODS: We obtained yearly mortality data for individuals 20 + years of...

Descripción completa

Detalles Bibliográficos
Autores principales: Tran, Alexander, Stoppel, Relika, Jiang, Huan, Kim, Kawon Victoria, Lange, Shannon, Petkevičienė, Janina, Radišauskas, Ričardas, Štelemėkas, Mindaugas, Telksnys, Tadas, Zafar, Anush, Rehm, Jürgen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618211/
https://www.ncbi.nlm.nih.gov/pubmed/36310159
http://dx.doi.org/10.1186/s12889-022-14354-8
_version_ 1784820999980580864
author Tran, Alexander
Stoppel, Relika
Jiang, Huan
Kim, Kawon Victoria
Lange, Shannon
Petkevičienė, Janina
Radišauskas, Ričardas
Štelemėkas, Mindaugas
Telksnys, Tadas
Zafar, Anush
Rehm, Jürgen
author_facet Tran, Alexander
Stoppel, Relika
Jiang, Huan
Kim, Kawon Victoria
Lange, Shannon
Petkevičienė, Janina
Radišauskas, Ričardas
Štelemėkas, Mindaugas
Telksnys, Tadas
Zafar, Anush
Rehm, Jürgen
author_sort Tran, Alexander
collection PubMed
description BACKGROUND: Despite being two Baltic countries with similar histories, Estonia and Lithuania have diverged in life expectancy trends in recent years. We investigated this divergence by comparing cause-specific mortality trends. METHODS: We obtained yearly mortality data for individuals 20 + years of age from 2001–2019 (19 years worth of data) through Statistics Lithuania, the Lithuanian Institute for Hygiene, and the National Institute for Health Development (Estonia). Using ICD-10 codes, we analyzed all-cause mortality rates and created eight major disease categories: ischemic heart disease, cerebrovascular disease, all other cardiovascular disease, cancers (neoplasms), digestive diseases, self-harm and interpersonal violence, unintentional injuries and related conditions, and other mortality (deaths per 100,000 population). We used joinpoint regression analysis, and analyzed the proportional contribution of each category to all-cause mortality. RESULTS: There was a steeper decline in all-cause mortality in Estonia (average annual percent change, AAPC = -2.55%, 95% CI: [-2.91%, -2.20%], P < .001) as compared to Lithuania (AAPC = -1.26%, 95% CI: [-2.18%, -0.57%], P = .001). For ischemic heart disease mortality Estonia exhibited a relatively larger decline over the 19-year period (AAPC = -6.61%, 95% CI: [-7.02%, -6.21%], P < .001) as compared to Lithuania (AAPC = -2.23%, 95% CI: [-3.40%, -1.04%], P < .001). CONCLUSION: Estonia and Lithuania showed distinct mortality trends and distributions of major disease categories. Our findings highlight the role of ischemic heart disease mortality. Differences in public health care, management and prevention of ischemic heart disease, alcohol control policies may explain these differences. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12889-022-14354-8.
format Online
Article
Text
id pubmed-9618211
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-96182112022-10-31 The temporal trend of cause-specific mortality: comparing Estonia and Lithuania, 2001 – 2019 Tran, Alexander Stoppel, Relika Jiang, Huan Kim, Kawon Victoria Lange, Shannon Petkevičienė, Janina Radišauskas, Ričardas Štelemėkas, Mindaugas Telksnys, Tadas Zafar, Anush Rehm, Jürgen BMC Public Health Research BACKGROUND: Despite being two Baltic countries with similar histories, Estonia and Lithuania have diverged in life expectancy trends in recent years. We investigated this divergence by comparing cause-specific mortality trends. METHODS: We obtained yearly mortality data for individuals 20 + years of age from 2001–2019 (19 years worth of data) through Statistics Lithuania, the Lithuanian Institute for Hygiene, and the National Institute for Health Development (Estonia). Using ICD-10 codes, we analyzed all-cause mortality rates and created eight major disease categories: ischemic heart disease, cerebrovascular disease, all other cardiovascular disease, cancers (neoplasms), digestive diseases, self-harm and interpersonal violence, unintentional injuries and related conditions, and other mortality (deaths per 100,000 population). We used joinpoint regression analysis, and analyzed the proportional contribution of each category to all-cause mortality. RESULTS: There was a steeper decline in all-cause mortality in Estonia (average annual percent change, AAPC = -2.55%, 95% CI: [-2.91%, -2.20%], P < .001) as compared to Lithuania (AAPC = -1.26%, 95% CI: [-2.18%, -0.57%], P = .001). For ischemic heart disease mortality Estonia exhibited a relatively larger decline over the 19-year period (AAPC = -6.61%, 95% CI: [-7.02%, -6.21%], P < .001) as compared to Lithuania (AAPC = -2.23%, 95% CI: [-3.40%, -1.04%], P < .001). CONCLUSION: Estonia and Lithuania showed distinct mortality trends and distributions of major disease categories. Our findings highlight the role of ischemic heart disease mortality. Differences in public health care, management and prevention of ischemic heart disease, alcohol control policies may explain these differences. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12889-022-14354-8. BioMed Central 2022-10-30 /pmc/articles/PMC9618211/ /pubmed/36310159 http://dx.doi.org/10.1186/s12889-022-14354-8 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Tran, Alexander
Stoppel, Relika
Jiang, Huan
Kim, Kawon Victoria
Lange, Shannon
Petkevičienė, Janina
Radišauskas, Ričardas
Štelemėkas, Mindaugas
Telksnys, Tadas
Zafar, Anush
Rehm, Jürgen
The temporal trend of cause-specific mortality: comparing Estonia and Lithuania, 2001 – 2019
title The temporal trend of cause-specific mortality: comparing Estonia and Lithuania, 2001 – 2019
title_full The temporal trend of cause-specific mortality: comparing Estonia and Lithuania, 2001 – 2019
title_fullStr The temporal trend of cause-specific mortality: comparing Estonia and Lithuania, 2001 – 2019
title_full_unstemmed The temporal trend of cause-specific mortality: comparing Estonia and Lithuania, 2001 – 2019
title_short The temporal trend of cause-specific mortality: comparing Estonia and Lithuania, 2001 – 2019
title_sort temporal trend of cause-specific mortality: comparing estonia and lithuania, 2001 – 2019
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618211/
https://www.ncbi.nlm.nih.gov/pubmed/36310159
http://dx.doi.org/10.1186/s12889-022-14354-8
work_keys_str_mv AT tranalexander thetemporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT stoppelrelika thetemporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT jianghuan thetemporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT kimkawonvictoria thetemporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT langeshannon thetemporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT petkevicienejanina thetemporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT radisauskasricardas thetemporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT stelemekasmindaugas thetemporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT telksnystadas thetemporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT zafaranush thetemporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT rehmjurgen thetemporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT tranalexander temporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT stoppelrelika temporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT jianghuan temporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT kimkawonvictoria temporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT langeshannon temporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT petkevicienejanina temporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT radisauskasricardas temporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT stelemekasmindaugas temporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT telksnystadas temporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT zafaranush temporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019
AT rehmjurgen temporaltrendofcausespecificmortalitycomparingestoniaandlithuania20012019