Cargando…
One-by-one single-molecule counting method for digital quantification of SARS-CoV-2 RNA
Digital counting individual nucleic acid molecule is of great significance for fundamental biological research and accurate diagnosis of genetic diseases, which is hard to achieve with existing single-molecule detection technologies. Herein, we report a novel one-by-one single-molecule counting meth...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618441/ https://www.ncbi.nlm.nih.gov/pubmed/36340244 http://dx.doi.org/10.1016/j.nantod.2022.101664 |
Sumario: | Digital counting individual nucleic acid molecule is of great significance for fundamental biological research and accurate diagnosis of genetic diseases, which is hard to achieve with existing single-molecule detection technologies. Herein, we report a novel one-by-one single-molecule counting method for digital quantification of SARS-Cov-2 RNA. This method uses one fluorescent micromotor functionalized with peptide nucleic acids (PNAs) to specially capture one target RNA molecule. The RNA-micromotors can be propelled by the electric field to target district and accurately counted. Moreover, the method can also clearly discriminate one-base mutation in the target RNAs, indicating the great potential for clinical diagnostics and virus traceability survey. |
---|