Cargando…

Identification of phytochemicals in Qingfei Paidu decoction for the treatment of coronavirus disease 2019 by targeting the virus-host interactome

Qingfei Paidu decoction (QFPDD) has been clinically proven to be effective in the treatment of coronavirus disease 2019 (COVID-19). However, the bioactive components and therapeutic mechanisms remain unclear. This study aimed to explore the effective components and underlying mechanisms of QFPDD in...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yuyun, Wu, Yan, Li, Siyan, Li, Yibin, Zhang, Xin, Shou, Zeren, Gu, Shuyin, Zhou, Chenliang, Xu, Daohua, Zhao, Kangni, Tan, Suiyi, Qiu, Jiayin, Pan, Xiaoyan, Li, Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier Masson SAS. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618446/
https://www.ncbi.nlm.nih.gov/pubmed/36411632
http://dx.doi.org/10.1016/j.biopha.2022.113946
Descripción
Sumario:Qingfei Paidu decoction (QFPDD) has been clinically proven to be effective in the treatment of coronavirus disease 2019 (COVID-19). However, the bioactive components and therapeutic mechanisms remain unclear. This study aimed to explore the effective components and underlying mechanisms of QFPDD in the treatment of COVID-19 by targeting the virus-host interactome and verifying the antiviral activities of its active components in vitro. Key active components and targets were identified by analysing the topological features of a compound-target-pathway-disease regulatory network of QFPDD for the treatment of COVID-19. The antiviral activity of the active components was determined by a live virus infection assay, and possible mechanisms were analysed by pseudotyped virus infection and molecular docking assays. The inhibitory effects of the components tested on the virus-induced release of IL-6, IL-1β and CXCL-10 were detected by ELISA. Three components of QFPDD, oroxylin A, hesperetin and scutellarin, exhibited potent antiviral activities against live SARS-CoV-2 virus and HCoV-OC43 virus with IC(50) values ranging from 18.68 to 63.27 μM. Oroxylin A inhibited the entry of SARS-CoV-2 pseudovirus into target cells and inhibited SARS-CoV-2 S protein-mediated cell-cell fusion by binding with the ACE2 receptor. The active components of QFPDD obviously inhibited the IL-6, IL-1β and CXCL-10 release induced by the SARS-CoV-2 S protein. This study supports the clinical application of QFPDD and provides an effective analysis method for the in-depth study of the mechanisms of traditional Chinese medicine (TCM) in the prevention and treatment of COVID-19.