Cargando…
CNNArginineMe: A CNN structure for training models for predicting arginine methylation sites based on the One-Hot encoding of peptide sequence
Protein arginine methylation (PRme), as one post-translational modification, plays a critical role in numerous cellular processes and regulates critical cellular functions. Though several in silico models for predicting PRme sites have been reported, new models may be required to develop due to the...
Autores principales: | Zhao, Jiaojiao, Jiang, Haoqiang, Zou, Guoyang, Lin, Qian, Wang, Qiang, Liu, Jia, Ma, Leina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618650/ https://www.ncbi.nlm.nih.gov/pubmed/36324513 http://dx.doi.org/10.3389/fgene.2022.1036862 |
Ejemplares similares
-
Anticancer Peptide Prediction via Multi-Kernel CNN and Attention Model
por: Wu, Xiujin, et al.
Publicado: (2022) -
Editorial: sORF Encoded Peptides in Health and Disease
por: Rothnagel, Joseph, et al.
Publicado: (2022) -
Application
of a Novel Hybrid CNN-GNN for Peptide
Ion Encoding
por: McDonnell, Kevin, et al.
Publicado: (2022) -
HN-CNN: A Heterogeneous Network Based on Convolutional Neural Network for m(7) G Site Disease Association Prediction
por: Zhang, Lin, et al.
Publicado: (2021) -
Prediction of the tetramer protein complex interaction based on CNN and SVM
por: Lyu, Yanfen, et al.
Publicado: (2023)