Cargando…
Visual Field Prediction: Evaluating the Clinical Relevance of Deep Learning Models
PURPOSE: Two novel deep learning methods using a convolutional neural network (CNN) and a recurrent neural network (RNN) have recently been developed to forecast future visual fields (VFs). Although the original evaluations of these models focused on overall accuracy, it was not assessed whether the...
Autores principales: | Eslami, Mohammad, Kim, Julia A., Zhang, Miao, Boland, Michael V., Wang, Mengyu, Chang, Dolly S., Elze, Tobias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9619031/ https://www.ncbi.nlm.nih.gov/pubmed/36325476 http://dx.doi.org/10.1016/j.xops.2022.100222 |
Ejemplares similares
-
PyVisualFields: A Python Package for Visual Field Analysis
por: Eslami, Mohammad, et al.
Publicado: (2023) -
Normative Percentiles of Retinal Nerve Fiber Layer Thickness and Glaucomatous Visual Field Loss
por: Singh, Rishabh, et al.
Publicado: (2023) -
Predicting eyes at risk for rapid glaucoma progression based on an initial visual field test using machine learning
por: Shuldiner, Scott R., et al.
Publicado: (2021) -
The Interrelationship between Refractive Error, Blood Vessel Anatomy, and Glaucomatous Visual Field Loss
por: Wang, Mengyu, et al.
Publicado: (2018) -
Improving Visual Field Forecasting by Correcting for the Effects of Poor Visual Field Reliability
por: Villasana, Gabriel A., et al.
Publicado: (2022)