Cargando…
Combining machine learning and quantum chemical calculations for high-throughput virtual screening of thermally activated delayed fluorescence molecular materials: the impact of selection strategy and structural mutations
In view of the theoretical importance and huge application potential of Thermally Activated Delayed Fluorescence (TADF) materials, it is of great significance to conduct High-Throughput Virtual Screening (HTVS) on compound libraries to find TADF candidate molecules. This research focuses on the comp...
Autores principales: | Tu, Chunyun, Huang, Weijiang, Liang, Sheng, Wang, Kui, Tian, Qin, Yan, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9619240/ https://www.ncbi.nlm.nih.gov/pubmed/36349007 http://dx.doi.org/10.1039/d2ra05643g |
Ejemplares similares
-
Comprehensive understanding of multiple resonance thermally activated delayed fluorescence through quantum chemistry calculations
por: Shizu, Katsuyuki, et al.
Publicado: (2022) -
Benzoate-based thermally activated delayed fluorescence materials
por: Zhang, Liang, et al.
Publicado: (2023) -
Machine Learning of Parameters for Accurate Semiempirical
Quantum Chemical Calculations
por: Dral, Pavlo O., et al.
Publicado: (2015) -
Synergistic Effects of DOPO-Based Derivative and Organo-Montmorillonite on Flame Retardancy, Thermal Stability and Mechanical Properties of Polypropylene
por: Huang, Weijiang, et al.
Publicado: (2022) -
Thermally Activated Delayed Fluorescent Gain Materials: Harvesting Triplet Excitons for Lasing
por: Yan, Chang‐Cun, et al.
Publicado: (2022)