Cargando…
DeepASmRNA: Reference-free prediction of alternative splicing events with a scalable and interpretable deep learning model
Alternative splicing is crucial for a wide range of biological processes. However, limited by the availability of reference genomes, genome-wide patterns of alternative splicing remain unknown in most nonmodel organisms. We present an attention-based convolutional neural network model, DeepASmRNA, f...
Autores principales: | Cao, Lei, Zhang, Quanbao, Song, Hongtao, Lin, Kui, Pang, Erli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9619290/ https://www.ncbi.nlm.nih.gov/pubmed/36325068 http://dx.doi.org/10.1016/j.isci.2022.105345 |
Ejemplares similares
-
MkcDBGAS: a reference-free approach to identify comprehensive alternative splicing events in a transcriptome
por: Zhang, Quanbao, et al.
Publicado: (2023) -
CuAS: a database of annotated transcripts generated by alternative splicing in cucumbers
por: Sun, Ying, et al.
Publicado: (2020) -
Alternative splicing during fruit development among fleshy fruits
por: Yan, Xiaomin, et al.
Publicado: (2021) -
The comparison of alternative splicing among the multiple tissues in cucumber
por: Sun, Ying, et al.
Publicado: (2018) -
Deep Splicing Code: Classifying Alternative Splicing Events Using Deep Learning
por: Louadi, Zakaria, et al.
Publicado: (2019)