Cargando…
Evaluation of federated learning variations for COVID-19 diagnosis using chest radiographs from 42 US and European hospitals
OBJECTIVE: Federated learning (FL) allows multiple distributed data holders to collaboratively learn a shared model without data sharing. However, individual health system data are heterogeneous. “Personalized” FL variations have been developed to counter data heterogeneity, but few have been evalua...
Autores principales: | Peng, Le, Luo, Gaoxiang, Walker, Andrew, Zaiman, Zachary, Jones, Emma K, Gupta, Hemant, Kersten, Kristopher, Burns, John L, Harle, Christopher A, Magoc, Tanja, Shickel, Benjamin, Steenburg, Scott D, Loftus, Tyler, Melton, Genevieve B, Gichoya, Judy Wawira, Sun, Ju, Tignanelli, Christopher J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9619688/ https://www.ncbi.nlm.nih.gov/pubmed/36214629 http://dx.doi.org/10.1093/jamia/ocac188 |
Ejemplares similares
-
Performance of a Chest Radiograph AI Diagnostic Tool for COVID-19: A
Prospective Observational Study
por: Sun, Ju, et al.
Publicado: (2022) -
A Prospective Observational Study to Investigate Performance of a Chest X-ray Artificial Intelligence Diagnostic Support Tool Across 12 U.S. Hospitals
por: Sun, Ju, et al.
Publicado: (2021) -
Federated learning for preserving data privacy in collaborative
healthcare research
por: Loftus, Tyler J, et al.
Publicado: (2022) -
Towards an internet-scale overlay network for latency-aware decentralized workflows at the edge
por: Kathiravelu, Pradeeban, et al.
Publicado: (2022) -
A fast, resource efficient, and reliable rule-based system for COVID-19 symptom identification
por: Sahoo, Himanshu S, et al.
Publicado: (2021)