Cargando…
Federated learning for preserving data privacy in collaborative healthcare research
Generalizability, external validity, and reproducibility are high priorities for artificial intelligence applications in healthcare. Traditional approaches to addressing these elements involve sharing patient data between institutions or practice settings, which can compromise data privacy (individu...
Autores principales: | Loftus, Tyler J, Ruppert, Matthew M, Shickel, Benjamin, Ozrazgat-Baslanti, Tezcan, Balch, Jeremy A, Efron, Philip A, Upchurch, Gilbert R, Rashidi, Parisa, Tignanelli, Christopher, Bian, Jiang, Bihorac, Azra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9619858/ https://www.ncbi.nlm.nih.gov/pubmed/36325438 http://dx.doi.org/10.1177/20552076221134455 |
Ejemplares similares
-
Dynamic predictions of postoperative complications from explainable, uncertainty-aware, and multi-task deep neural networks
por: Shickel, Benjamin, et al.
Publicado: (2023) -
Building an automated, machine learning-enabled platform for predicting post-operative complications
por: Balch, Jeremy A, et al.
Publicado: (2023) -
Uncertainty-aware deep learning in healthcare: A scoping review
por: Loftus, Tyler J., et al.
Publicado: (2022) -
DeepSOFA: A Continuous Acuity Score for Critically Ill Patients using Clinically Interpretable Deep Learning
por: Shickel, Benjamin, et al.
Publicado: (2019) -
Deep Multi-Modal Transfer Learning for Augmented Patient Acuity Assessment in the Intelligent ICU
por: Shickel, Benjamin, et al.
Publicado: (2021)