Cargando…
Machine Learning for Predicting Chemical Potentials of Multifunctional Organic Compounds in Atmospherically Relevant Solutions
[Image: see text] We have trained the Extreme Minimum Learning Machine (EMLM) machine learning model to predict chemical potentials of individual conformers of multifunctional organic compounds containing carbon, hydrogen, and oxygen. The model is able to predict chemical potentials of molecules tha...
Autores principales: | Hyttinen, Noora, Pihlajamäki, Antti, Häkkinen, Hannu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9619930/ https://www.ncbi.nlm.nih.gov/pubmed/36259771 http://dx.doi.org/10.1021/acs.jpclett.2c02612 |
Ejemplares similares
-
Improving Solubility and Activity Estimates of Multifunctional
Atmospheric Organics by Selecting Conformers in COSMOtherm
por: Hyttinen, Noora, et al.
Publicado: (2020) -
A method for structure prediction of metal-ligand interfaces of hybrid nanoparticles
por: Malola, Sami, et al.
Publicado: (2019) -
The viscosity of atmospherically relevant organic particles
por: Reid, Jonathan P., et al.
Publicado: (2018) -
Volatile Organic Compounds in the Atmosphere
por: Koppmann, Ralf
Publicado: (2007) -
Ligand Ratio Plays a Critical Role in the Design of
Optimal Multifunctional Gold Nanoclusters for Targeted Gastric Cancer
Therapy
por: Matus, María Francisca, et al.
Publicado: (2021)