Cargando…

Multisite evaluation of prediction models for emergency department crowding before and during the COVID-19 pandemic

OBJECTIVE: To develop a machine learning framework to forecast emergency department (ED) crowding and to evaluate model performance under spatial and temporal data drift. MATERIALS AND METHODS: We obtained 4 datasets, identified by the location: 1—large academic hospital and 2—rural hospital, and ti...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Ari J, Patterson, Brian W, Pulia, Michael S, Mayer, John, Schwei, Rebecca J, Nagarajan, Radha, Liao, Frank, Shah, Manish N, Boutilier, Justin J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620348/
https://www.ncbi.nlm.nih.gov/pubmed/36308445
http://dx.doi.org/10.1093/jamia/ocac214
Descripción
Sumario:OBJECTIVE: To develop a machine learning framework to forecast emergency department (ED) crowding and to evaluate model performance under spatial and temporal data drift. MATERIALS AND METHODS: We obtained 4 datasets, identified by the location: 1—large academic hospital and 2—rural hospital, and time period: pre-coronavirus disease (COVID) (January 1, 2019–February 1, 2020) and COVID-era (May 15, 2020–February 1, 2021). Our primary target was a binary outcome that is equal to 1 if the number of patients with acute respiratory illness that were ED boarding for more than 4 h was above a prescribed historical percentile. We trained a random forest and used the area under the curve (AUC) to evaluate out-of-sample performance for 2 experiments: (1) we evaluated the impact of sudden temporal drift by training models using pre-COVID data and testing them during the COVID-era, (2) we evaluated the impact of spatial drift by testing models trained at location 1 on data from location 2, and vice versa. RESULTS: The baseline AUC values for ED boarding ranged from 0.54 (pre-COVID at location 2) to 0.81 (COVID-era at location 1). Models trained with pre-COVID data performed similarly to COVID-era models (0.82 vs 0.78 at location 1). Models that were transferred from location 2 to location 1 performed worse than models trained at location 1 (0.51 vs 0.78). DISCUSSION AND CONCLUSION: Our results demonstrate that ED boarding is a predictable metric for ED crowding, models were not significantly impacted by temporal data drift, and any attempts at implementation must consider spatial data drift.