Cargando…
An enChIP system for the analysis of genome functions in budding yeast
The identification of molecules associated with a specific genomic region is essential for elucidating the molecular mechanisms underlying genome functions such as transcription. Engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) is a technology that enables the purifica...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620394/ https://www.ncbi.nlm.nih.gov/pubmed/36325175 http://dx.doi.org/10.1093/biomethods/bpac025 |
Sumario: | The identification of molecules associated with a specific genomic region is essential for elucidating the molecular mechanisms underlying genome functions such as transcription. Engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) is a technology that enables the purification of specific genomic regions and the subsequent identification of their associated molecules. In enChIP, the target genomic region is tagged with engineered DNA-binding molecules, such as variants of the clustered regularly interspaced short palindromic repeats (CRISPR) system consisting of a catalytically inactive form of Cas9 (dCas9) and a guide RNA. This article describes the generation of a plasmid expressing Streptococcus pyogenes dCas9 fused to a 3xFLAG-tag (3xFLAG-Sp-dCas9) and its successful expression in the budding yeast, Saccharomyces cerevisiae. Furthermore, we showed that this plasmid can be used for enChIP analysis in budding yeast. In addition, the plasmid may also be a useful tool for researchers analyzing genome functions such as transcription and for CRISPR interference experiments in budding yeasts. |
---|