Cargando…
O-glycosylation and its role in therapeutic proteins
Protein glycosylation is ubiquitous throughout biology. From bacteria to humans, this post translational modification with sophisticated carbohydrate structures plays a profound role in the interaction of proteins with cells and changes the physiochemical properties of the proteins that carry them....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620488/ https://www.ncbi.nlm.nih.gov/pubmed/36214107 http://dx.doi.org/10.1042/BSR20220094 |
Sumario: | Protein glycosylation is ubiquitous throughout biology. From bacteria to humans, this post translational modification with sophisticated carbohydrate structures plays a profound role in the interaction of proteins with cells and changes the physiochemical properties of the proteins that carry them. When the glycans are linked to Ser or Thr residues, they are known as O-linked glycans, as the glycosidic linkage is through oxygen. O-glycans are perhaps best known as part of the mucin proteins, however many soluble proteins carry these types of glycans, and that their roles in biology are still being discovered. Many of the soluble proteins that carry O-glycans have a role as therapeutic proteins, and in the 21st century, the application of synthetic biology is starting to be applied to improving these proteins through manipulation of the glycans. This review will explore the role of these O-linked glycans in proteins with pharmaceutical significance, as well as recent advancements in recombinant glycoprotein therapeutics. |
---|