Cargando…
Interpretable machine learning predicts cardiac resynchronization therapy responses from personalized biochemical and biomechanical features
BACKGROUND: Cardiac Resynchronization Therapy (CRT) is a widely used, device-based therapy for patients with left ventricle (LV) failure. Unfortunately, many patients do not benefit from CRT, so there is potential value in identifying this group of non-responders before CRT implementation. Past stud...
Autores principales: | Haque, Anamul, Stubbs, Doug, Hubig, Nina C., Spinale, Francis G., Richardson, William J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620606/ https://www.ncbi.nlm.nih.gov/pubmed/36316772 http://dx.doi.org/10.1186/s12911-022-02015-0 |
Ejemplares similares
-
Machine learning for multidimensional response and survival after cardiac resynchronization therapy using features from cardiac magnetic resonance
por: Bivona, Derek J., et al.
Publicado: (2022) -
Cardiac resynchronization therapy is certainly cardiac therapy, but how much resynchronization and how much atrioventricular delay optimization?
por: Kyriacou, Andreas, et al.
Publicado: (2011) -
Combination of personalized computational modeling and machine learning for optimization of left ventricular pacing site in cardiac resynchronization therapy
por: Dokuchaev, Arsenii, et al.
Publicado: (2023) -
Can machine learning improve patient selection for cardiac resynchronization therapy?
por: Hu, Szu-Yeu, et al.
Publicado: (2019) -
Cardiac Resynchronization Therapy in Children
por: Batra, Anjan S, et al.
Publicado: (2009)