Cargando…
pSuc-EDBAM: Predicting lysine succinylation sites in proteins based on ensemble dense blocks and an attention module
BACKGROUND: Lysine succinylation is a newly discovered protein post-translational modifications. Predicting succinylation sites helps investigate the metabolic disease treatments. However, the biological experimental approaches are costly and inefficient, it is necessary to develop efficient computa...
Autores principales: | Jia, Jianhua, Wu, Genqiang, Li, Meifang, Qiu, Wangren |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620660/ https://www.ncbi.nlm.nih.gov/pubmed/36316638 http://dx.doi.org/10.1186/s12859-022-05001-5 |
Ejemplares similares
-
pSuc-FFSEA: Predicting Lysine Succinylation Sites in Proteins Based on Feature Fusion and Stacking Ensemble Algorithm
por: Jia, Jianhua, et al.
Publicado: (2022) -
iSuc-PseAAC: predicting lysine succinylation in proteins by incorporating peptide position-specific propensity
por: Xu, Yan, et al.
Publicado: (2015) -
iEnhancer-DCSV: Predicting enhancers and their strength based on DenseNet and improved convolutional block attention module
por: Jia, Jianhua, et al.
Publicado: (2023) -
MDCAN-Lys: A Model for Predicting Succinylation Sites Based on Multilane Dense Convolutional Attention Network
por: Wang, Huiqing, et al.
Publicado: (2021) -
Large-Scale Assessment of Bioinformatics Tools for Lysine Succinylation Sites
por: Hasan, Md. Mehedi, et al.
Publicado: (2019)