Cargando…
Access to ground truth at unconstrained size makes simulated data as indispensable as experimental data for bioinformatics methods development and benchmarking
Autores principales: | Sandve, Geir Kjetil, Greiff, Victor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620827/ https://www.ncbi.nlm.nih.gov/pubmed/36073940 http://dx.doi.org/10.1093/bioinformatics/btac612 |
Ejemplares similares
-
DagSim: Combining DAG-based model structure with unconstrained data types and relations for flexible, transparent, and modularized data simulation
por: Al Hajj, Ghadi S., et al.
Publicado: (2023) -
Improved benchmarks for computational motif discovery
por: Sandve, Geir Kjetil, et al.
Publicado: (2007) -
In silico proof of principle of machine learning-based antibody design at unconstrained scale
por: Akbar, Rahmad, et al.
Publicado: (2022) -
immuneSIM: tunable multi-feature simulation of B- and T-cell receptor repertoires for immunoinformatics benchmarking
por: Weber, Cédric R, et al.
Publicado: (2020) -
CompAIRR: ultra-fast comparison of adaptive immune receptor repertoires by exact and approximate sequence matching
por: Rognes, Torbjørn, et al.
Publicado: (2022)