Cargando…
dsMTL: a computational framework for privacy-preserving, distributed multi-task machine learning
MOTIVATION: In multi-cohort machine learning studies, it is critical to differentiate between effects that are reproducible across cohorts and those that are cohort-specific. Multi-task learning (MTL) is a machine learning approach that facilitates this differentiation through the simultaneous learn...
Autores principales: | Cao, Han, Zhang, Youcheng, Baumbach, Jan, Burton, Paul R, Dwyer, Dominic, Koutsouleris, Nikolaos, Matschinske, Julian, Marcon, Yannick, Rajan, Sivanesan, Rieg, Thilo, Ryser-Welch, Patricia, Späth, Julian, Herrmann, Carl, Schwarz, Emanuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620828/ https://www.ncbi.nlm.nih.gov/pubmed/36073911 http://dx.doi.org/10.1093/bioinformatics/btac616 |
Ejemplares similares
-
Privacy-aware multi-institutional time-to-event studies
por: Späth, Julian, et al.
Publicado: (2022) -
Privacy-Preserving Artificial Intelligence Techniques in Biomedicine
por: Torkzadehmahani, Reihaneh, et al.
Publicado: (2022) -
Flimma: a federated and privacy-aware tool for differential gene expression analysis
por: Zolotareva, Olga, et al.
Publicado: (2021) -
Orchestrating privacy-protected big data analyses of data from different resources with R and DataSHIELD
por: Marcon, Yannick, et al.
Publicado: (2021) -
Transcription of cis Antisense Small RNA MtlS in Vibrio cholerae Is Regulated by Transcription of Its Target Gene, mtlA
por: Zhang, Mark G., et al.
Publicado: (2019)