Cargando…

On Deterministic and Stochastic Multiple Pathogen Epidemic Models

In this paper, we consider a stochastic epidemic model with two pathogens. In order to analyze the coexistence of two pathogens, we compute numerically the expectation time until extinction (the mean persistence time), which satisfies a stationary partial differential equation with degenerate variab...

Descripción completa

Detalles Bibliográficos
Autor principal: Vadillo, Fernando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9620904/
https://www.ncbi.nlm.nih.gov/pubmed/36417229
http://dx.doi.org/10.3390/epidemiologia2030025
Descripción
Sumario:In this paper, we consider a stochastic epidemic model with two pathogens. In order to analyze the coexistence of two pathogens, we compute numerically the expectation time until extinction (the mean persistence time), which satisfies a stationary partial differential equation with degenerate variable coefficients, related to backward Kolmogorov equation. I use the finite element method in order to solve this equation, and we implement it in FreeFem++. The main conclusion of this paper is that the deterministic and stochastic epidemic models differ considerably in predicting coexistence of the two diseases and in the extinction outcome of one of them. Now, the main challenge would be to find an explanation for this result.