Cargando…
AI-based chest CT semantic segmentation algorithm enables semi-automated lung cancer surgery planning by recognizing anatomical variants of pulmonary vessels
BACKGROUND: The recognition of anatomical variants is essential in preoperative planning for lung cancer surgery. Although three-dimensional (3-D) reconstruction provided an intuitive demonstration of the anatomical structure, the recognition process remains fully manual. To render a semiautomated a...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9621115/ https://www.ncbi.nlm.nih.gov/pubmed/36324583 http://dx.doi.org/10.3389/fonc.2022.1021084 |
_version_ | 1784821468647915520 |
---|---|
author | Chen, Xiuyuan Xu, Hao Qi, Qingyi Sun, Chao Jin, Jian Zhao, Heng Wang, Xun Weng, Wenhan Wang, Shaodong Sui, Xizhao Wang, Zhenfan Dai, Chenyang Peng, Muyun Wang, Dawei Hao, Zenghao Huang, Yafen Wang, Xiang Duan, Liang Zhu, Yuming Hong, Nan Yang, Fan |
author_facet | Chen, Xiuyuan Xu, Hao Qi, Qingyi Sun, Chao Jin, Jian Zhao, Heng Wang, Xun Weng, Wenhan Wang, Shaodong Sui, Xizhao Wang, Zhenfan Dai, Chenyang Peng, Muyun Wang, Dawei Hao, Zenghao Huang, Yafen Wang, Xiang Duan, Liang Zhu, Yuming Hong, Nan Yang, Fan |
author_sort | Chen, Xiuyuan |
collection | PubMed |
description | BACKGROUND: The recognition of anatomical variants is essential in preoperative planning for lung cancer surgery. Although three-dimensional (3-D) reconstruction provided an intuitive demonstration of the anatomical structure, the recognition process remains fully manual. To render a semiautomated approach for surgery planning, we developed an artificial intelligence (AI)–based chest CT semantic segmentation algorithm that recognizes pulmonary vessels on lobular or segmental levels. Hereby, we present a retrospective validation of the algorithm comparing surgeons’ performance. METHODS: The semantic segmentation algorithm to be validated was trained on non-contrast CT scans from a single center. A retrospective pilot study was performed. An independent validation dataset was constituted by an arbitrary selection from patients who underwent lobectomy or segmentectomy in three institutions during Apr. 2020 to Jun. 2021. The golden standard of anatomical variants of each enrolled case was obtained via expert surgeons’ judgments based on chest CT, 3-D reconstruction, and surgical observation. The performance of the algorithm is compared against the performance of two junior thoracic surgery attendings based on chest CT. RESULTS: A total of 27 cases were included in this study. The overall case-wise accuracy of the AI model was 82.8% in pulmonary vessels compared to 78.8% and 77.0% for the two surgeons, respectively. Segmental artery accuracy was 79.7%, 73.6%, and 72.7%; lobular vein accuracy was 96.3%, 96.3%, and 92.6% by the AI model and two surgeons, respectively. No statistical significance was found. In subgroup analysis, the anatomic structure-wise analysis of the AI algorithm showed a significant difference in accuracies between different lobes (p = 0.012). Higher AI accuracy in the right-upper lobe (RUL) and left-lower lobe (LLL) arteries was shown. A trend of better performance in non-contrast CT was also detected. Most recognition errors by the algorithm were the misclassification of LA(1+2) and LA(3). Radiological parameters did not exhibit a significant impact on the performance of both AI and surgeons. CONCLUSION: The semantic segmentation algorithm achieves the recognition of the segmental pulmonary artery and the lobular pulmonary vein. The performance of the model approximates that of junior thoracic surgery attendings. Our work provides a novel semiautomated surgery planning approach that is potentially beneficial to lung cancer patients. |
format | Online Article Text |
id | pubmed-9621115 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96211152022-11-01 AI-based chest CT semantic segmentation algorithm enables semi-automated lung cancer surgery planning by recognizing anatomical variants of pulmonary vessels Chen, Xiuyuan Xu, Hao Qi, Qingyi Sun, Chao Jin, Jian Zhao, Heng Wang, Xun Weng, Wenhan Wang, Shaodong Sui, Xizhao Wang, Zhenfan Dai, Chenyang Peng, Muyun Wang, Dawei Hao, Zenghao Huang, Yafen Wang, Xiang Duan, Liang Zhu, Yuming Hong, Nan Yang, Fan Front Oncol Oncology BACKGROUND: The recognition of anatomical variants is essential in preoperative planning for lung cancer surgery. Although three-dimensional (3-D) reconstruction provided an intuitive demonstration of the anatomical structure, the recognition process remains fully manual. To render a semiautomated approach for surgery planning, we developed an artificial intelligence (AI)–based chest CT semantic segmentation algorithm that recognizes pulmonary vessels on lobular or segmental levels. Hereby, we present a retrospective validation of the algorithm comparing surgeons’ performance. METHODS: The semantic segmentation algorithm to be validated was trained on non-contrast CT scans from a single center. A retrospective pilot study was performed. An independent validation dataset was constituted by an arbitrary selection from patients who underwent lobectomy or segmentectomy in three institutions during Apr. 2020 to Jun. 2021. The golden standard of anatomical variants of each enrolled case was obtained via expert surgeons’ judgments based on chest CT, 3-D reconstruction, and surgical observation. The performance of the algorithm is compared against the performance of two junior thoracic surgery attendings based on chest CT. RESULTS: A total of 27 cases were included in this study. The overall case-wise accuracy of the AI model was 82.8% in pulmonary vessels compared to 78.8% and 77.0% for the two surgeons, respectively. Segmental artery accuracy was 79.7%, 73.6%, and 72.7%; lobular vein accuracy was 96.3%, 96.3%, and 92.6% by the AI model and two surgeons, respectively. No statistical significance was found. In subgroup analysis, the anatomic structure-wise analysis of the AI algorithm showed a significant difference in accuracies between different lobes (p = 0.012). Higher AI accuracy in the right-upper lobe (RUL) and left-lower lobe (LLL) arteries was shown. A trend of better performance in non-contrast CT was also detected. Most recognition errors by the algorithm were the misclassification of LA(1+2) and LA(3). Radiological parameters did not exhibit a significant impact on the performance of both AI and surgeons. CONCLUSION: The semantic segmentation algorithm achieves the recognition of the segmental pulmonary artery and the lobular pulmonary vein. The performance of the model approximates that of junior thoracic surgery attendings. Our work provides a novel semiautomated surgery planning approach that is potentially beneficial to lung cancer patients. Frontiers Media S.A. 2022-10-13 /pmc/articles/PMC9621115/ /pubmed/36324583 http://dx.doi.org/10.3389/fonc.2022.1021084 Text en Copyright © 2022 Chen, Xu, Qi, Sun, Jin, Zhao, Wang, Weng, Wang, Sui, Wang, Dai, Peng, Wang, Hao, Huang, Wang, Duan, Zhu, Hong and Yang https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Chen, Xiuyuan Xu, Hao Qi, Qingyi Sun, Chao Jin, Jian Zhao, Heng Wang, Xun Weng, Wenhan Wang, Shaodong Sui, Xizhao Wang, Zhenfan Dai, Chenyang Peng, Muyun Wang, Dawei Hao, Zenghao Huang, Yafen Wang, Xiang Duan, Liang Zhu, Yuming Hong, Nan Yang, Fan AI-based chest CT semantic segmentation algorithm enables semi-automated lung cancer surgery planning by recognizing anatomical variants of pulmonary vessels |
title | AI-based chest CT semantic segmentation algorithm enables semi-automated lung cancer surgery planning by recognizing anatomical variants of pulmonary vessels |
title_full | AI-based chest CT semantic segmentation algorithm enables semi-automated lung cancer surgery planning by recognizing anatomical variants of pulmonary vessels |
title_fullStr | AI-based chest CT semantic segmentation algorithm enables semi-automated lung cancer surgery planning by recognizing anatomical variants of pulmonary vessels |
title_full_unstemmed | AI-based chest CT semantic segmentation algorithm enables semi-automated lung cancer surgery planning by recognizing anatomical variants of pulmonary vessels |
title_short | AI-based chest CT semantic segmentation algorithm enables semi-automated lung cancer surgery planning by recognizing anatomical variants of pulmonary vessels |
title_sort | ai-based chest ct semantic segmentation algorithm enables semi-automated lung cancer surgery planning by recognizing anatomical variants of pulmonary vessels |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9621115/ https://www.ncbi.nlm.nih.gov/pubmed/36324583 http://dx.doi.org/10.3389/fonc.2022.1021084 |
work_keys_str_mv | AT chenxiuyuan aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT xuhao aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT qiqingyi aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT sunchao aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT jinjian aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT zhaoheng aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT wangxun aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT wengwenhan aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT wangshaodong aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT suixizhao aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT wangzhenfan aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT daichenyang aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT pengmuyun aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT wangdawei aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT haozenghao aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT huangyafen aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT wangxiang aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT duanliang aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT zhuyuming aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT hongnan aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels AT yangfan aibasedchestctsemanticsegmentationalgorithmenablessemiautomatedlungcancersurgeryplanningbyrecognizinganatomicalvariantsofpulmonaryvessels |