Cargando…
Haploinsufficiency of CYP8B1 associates with increased insulin sensitivity in humans
BACKGROUND: Cytochrome P450 family 8 subfamily B member 1 (CYP8B1) generates 12α-hydroxylated bile acids (BAs) that are associated with insulin resistance in humans. METHODS: To determine whether reduced CYP8B1 activity improves insulin sensitivity, we sequenced CYP8B1 in individuals without diabete...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Clinical Investigation
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9621133/ https://www.ncbi.nlm.nih.gov/pubmed/36107630 http://dx.doi.org/10.1172/JCI152961 |
Sumario: | BACKGROUND: Cytochrome P450 family 8 subfamily B member 1 (CYP8B1) generates 12α-hydroxylated bile acids (BAs) that are associated with insulin resistance in humans. METHODS: To determine whether reduced CYP8B1 activity improves insulin sensitivity, we sequenced CYP8B1 in individuals without diabetes and identified carriers of complete loss-of-function (CLOF) mutations utilizing functional assays. RESULTS: Mutation carriers had lower plasma 12α-hydroxylated/non–12α-hydroxylated BA and cholic acid (CA)/chenodeoxycholic acid (CDCA) ratios compared with age-, sex-, and BMI-matched controls. During insulin clamps, hepatic glucose production was suppressed to a similar magnitude by insulin, but glucose infusion rates to maintain euglycemia were higher in mutation carriers, indicating increased peripheral insulin sensitivity. Consistently, a polymorphic CLOF CYP8B1 mutation associated with lower fasting insulin in the AMP-T2D-GENES study. Exposure of primary human muscle cells to mutation-carrier CA/CDCA ratios demonstrated increased FOXO1 activity, and upregulation of both insulin signaling and glucose uptake, which were mediated by increased CDCA. Inhibition of FOXO1 attenuated the CDCA-mediated increase in muscle insulin signaling and glucose uptake. We found that reduced CYP8B1 activity associates with increased insulin sensitivity in humans. CONCLUSION: Our findings suggest that increased circulatory CDCA due to reduced CYP8B1 activity increases skeletal muscle insulin sensitivity, contributing to increased whole-body insulin sensitization. FUNDING: Biomedical Research Council/National Medical Research Council of Singapore. |
---|