Cargando…
The male-type mitochondrial genome of the freshwater mussel Potamilus streckersoni Smith, Johnson, Inoue, Doyle, & Randklev, 2019 (Bivalvia: Unionidae)
The global decline of freshwater mussels emphasizes the need to establish genetic resources to better understand their biology, including a unique mitochondrial biology known as doubly uniparental inheritance. In this study, we present the complete male-type (M-type) mitochondrial genome of the fres...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9621207/ https://www.ncbi.nlm.nih.gov/pubmed/36325280 http://dx.doi.org/10.1080/23802359.2022.2134750 |
Sumario: | The global decline of freshwater mussels emphasizes the need to establish genetic resources to better understand their biology, including a unique mitochondrial biology known as doubly uniparental inheritance. In this study, we present the complete male-type (M-type) mitochondrial genome of the freshwater mussel, Potamilus streckersoni Smith, Johnson, Inoue, Doyle, & Randklev, 2019. The M-type mtDNA is approximately 16 kilobases and contains 22 tRNAs, two rRNAs, and 14 protein-coding genes, including a male-specific open reading frame. Read coverage revealed that M-type mtDNA was more abundant than female-type mtDNA in male gonadal tissue, with respect to a non-spawning male individual. Novel mitogenomes were resolved within previously described sex-specific monophyletic clades across the subfamily Ambleminae. The availability of high-quality nuclear and mitochondrial genomic data for P. streckersoni makes it a model for future research into the potential role of mtDNA in sex determination or sexual development in freshwater mussels. |
---|