Cargando…

Chitooligosaccharide prevents vascular endothelial cell apoptosis by attenuation of endoplasmic reticulum stress via suppression of oxidative stress through Nrf2-SOD1 up-regulation

CONTEXT: Endoplasmic reticulum (ER) stress contributes to endothelium pathological conditions. Chitooligosaccharides (COS) have health benefits, but their effect on endothelial cells is unknown. We demonstrate for the first time a protective effect of COS against ER-induced endothelial cell damage....

Descripción completa

Detalles Bibliográficos
Autores principales: Ei, Zin Zin, Hutamekalin, Pilaiwanwadee, Prommeenate, Peerada, Singh, Avtar, Benjakul, Soottawat, Visuttijai, Kittichate, Chanvorachote, Pithi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9621211/
https://www.ncbi.nlm.nih.gov/pubmed/36300849
http://dx.doi.org/10.1080/13880209.2022.2133150
Descripción
Sumario:CONTEXT: Endoplasmic reticulum (ER) stress contributes to endothelium pathological conditions. Chitooligosaccharides (COS) have health benefits, but their effect on endothelial cells is unknown. We demonstrate for the first time a protective effect of COS against ER-induced endothelial cell damage. OBJECTIVE: To evaluate the protective effect of COS on ER stress-induced apoptosis in endothelial cells. MATERIAL AND METHODS: Endothelial (EA.hy926) cells were pre-treated with COS (250 or 500 μg/mL) for 24 h, and then treated with 0.16 μg/mL of Tg for 24 h and compared to the untreated control. Apoptosis and necrosis were detected by Annexin V-FITC/propidium iodide co-staining. Reactive oxygen species (ROS) were measured with the DCFH(2)-DA and DHE probes. The protective pathway and ER stress markers were evaluated by reverse transcription-polymerase chain reaction, western blot, and immunofluorescence analyses. RESULTS: COS attenuated ER stress-induced cell death. The viability of EA.hy926 cells treated with Tg alone was 44.97 ± 1% but the COS pre-treatment increased cells viability to 74.74 ± 3.95% in the 250 μg/mL COS and 75.34 ± 2.4% in the 500 μg/mL COS treatments. Tg induced ER stress and ROS, which were associated with ER stress-mediated death. Interestingly, COS reduced ROS by upregulating nuclear factor-E2-related factor 2 (Nrf2), and the oxidative enzymes, superoxide dismutase1 (SOD1) and catalase. COS also suppressed up-regulation of the ER-related apoptosis protein, CHOP induced by Tg. CONCLUSIONS: COS protected against ER stress-induced apoptosis in endothelial cells by suppressing ROS and up-regulation Nrf2 and SOD1. These findings support the use of COS to protect endothelial cells.