Cargando…

Scaffolding protein functional sites using deep learning

The binding and catalytic functions of proteins are generally mediated by a small number of functional residues held in place by the overall protein structure. We describe deep learning approaches for scaffolding such functional sites without needing to pre-specify the fold or secondary structure of...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jue, Lisanza, Sidney, Juergens, David, Tischer, Doug, Watson, Joseph L., Castro, Karla M., Ragotte, Robert, Saragovi, Amijai, Milles, Lukas F., Baek, Minkyung, Anishchenko, Ivan, Yang, Wei, Hicks, Derrick R., Expòsit, Marc, Schlichthaerle, Thomas, Chun, Jung-Ho, Dauparas, Justas, Bennett, Nathaniel, Wicky, Basile I. M., Muenks, Andrew, DiMaio, Frank, Correia, Bruno, Ovchinnikov, Sergey, Baker, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9621694/
https://www.ncbi.nlm.nih.gov/pubmed/35862514
http://dx.doi.org/10.1126/science.abn2100
_version_ 1784821602143174656
author Wang, Jue
Lisanza, Sidney
Juergens, David
Tischer, Doug
Watson, Joseph L.
Castro, Karla M.
Ragotte, Robert
Saragovi, Amijai
Milles, Lukas F.
Baek, Minkyung
Anishchenko, Ivan
Yang, Wei
Hicks, Derrick R.
Expòsit, Marc
Schlichthaerle, Thomas
Chun, Jung-Ho
Dauparas, Justas
Bennett, Nathaniel
Wicky, Basile I. M.
Muenks, Andrew
DiMaio, Frank
Correia, Bruno
Ovchinnikov, Sergey
Baker, David
author_facet Wang, Jue
Lisanza, Sidney
Juergens, David
Tischer, Doug
Watson, Joseph L.
Castro, Karla M.
Ragotte, Robert
Saragovi, Amijai
Milles, Lukas F.
Baek, Minkyung
Anishchenko, Ivan
Yang, Wei
Hicks, Derrick R.
Expòsit, Marc
Schlichthaerle, Thomas
Chun, Jung-Ho
Dauparas, Justas
Bennett, Nathaniel
Wicky, Basile I. M.
Muenks, Andrew
DiMaio, Frank
Correia, Bruno
Ovchinnikov, Sergey
Baker, David
author_sort Wang, Jue
collection PubMed
description The binding and catalytic functions of proteins are generally mediated by a small number of functional residues held in place by the overall protein structure. We describe deep learning approaches for scaffolding such functional sites without needing to pre-specify the fold or secondary structure of the scaffold. The first approach, “constrained hallucination”, optimizes sequences such that their predicted structures contain the desired functional site. The second approach, “inpainting”, starts from the functional site and fills in additional sequence and structure to create a viable protein scaffold in a single forward pass through a specifically trained RosettaFold network. We use the methods to design candidate immunogens, receptor traps, metalloproteins, enzymes, and protein-binding proteins, and validate the designs using a combination of in silico and experimental tests.
format Online
Article
Text
id pubmed-9621694
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-96216942022-10-31 Scaffolding protein functional sites using deep learning Wang, Jue Lisanza, Sidney Juergens, David Tischer, Doug Watson, Joseph L. Castro, Karla M. Ragotte, Robert Saragovi, Amijai Milles, Lukas F. Baek, Minkyung Anishchenko, Ivan Yang, Wei Hicks, Derrick R. Expòsit, Marc Schlichthaerle, Thomas Chun, Jung-Ho Dauparas, Justas Bennett, Nathaniel Wicky, Basile I. M. Muenks, Andrew DiMaio, Frank Correia, Bruno Ovchinnikov, Sergey Baker, David Science Article The binding and catalytic functions of proteins are generally mediated by a small number of functional residues held in place by the overall protein structure. We describe deep learning approaches for scaffolding such functional sites without needing to pre-specify the fold or secondary structure of the scaffold. The first approach, “constrained hallucination”, optimizes sequences such that their predicted structures contain the desired functional site. The second approach, “inpainting”, starts from the functional site and fills in additional sequence and structure to create a viable protein scaffold in a single forward pass through a specifically trained RosettaFold network. We use the methods to design candidate immunogens, receptor traps, metalloproteins, enzymes, and protein-binding proteins, and validate the designs using a combination of in silico and experimental tests. 2022-07-22 2022-07-21 /pmc/articles/PMC9621694/ /pubmed/35862514 http://dx.doi.org/10.1126/science.abn2100 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Wang, Jue
Lisanza, Sidney
Juergens, David
Tischer, Doug
Watson, Joseph L.
Castro, Karla M.
Ragotte, Robert
Saragovi, Amijai
Milles, Lukas F.
Baek, Minkyung
Anishchenko, Ivan
Yang, Wei
Hicks, Derrick R.
Expòsit, Marc
Schlichthaerle, Thomas
Chun, Jung-Ho
Dauparas, Justas
Bennett, Nathaniel
Wicky, Basile I. M.
Muenks, Andrew
DiMaio, Frank
Correia, Bruno
Ovchinnikov, Sergey
Baker, David
Scaffolding protein functional sites using deep learning
title Scaffolding protein functional sites using deep learning
title_full Scaffolding protein functional sites using deep learning
title_fullStr Scaffolding protein functional sites using deep learning
title_full_unstemmed Scaffolding protein functional sites using deep learning
title_short Scaffolding protein functional sites using deep learning
title_sort scaffolding protein functional sites using deep learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9621694/
https://www.ncbi.nlm.nih.gov/pubmed/35862514
http://dx.doi.org/10.1126/science.abn2100
work_keys_str_mv AT wangjue scaffoldingproteinfunctionalsitesusingdeeplearning
AT lisanzasidney scaffoldingproteinfunctionalsitesusingdeeplearning
AT juergensdavid scaffoldingproteinfunctionalsitesusingdeeplearning
AT tischerdoug scaffoldingproteinfunctionalsitesusingdeeplearning
AT watsonjosephl scaffoldingproteinfunctionalsitesusingdeeplearning
AT castrokarlam scaffoldingproteinfunctionalsitesusingdeeplearning
AT ragotterobert scaffoldingproteinfunctionalsitesusingdeeplearning
AT saragoviamijai scaffoldingproteinfunctionalsitesusingdeeplearning
AT milleslukasf scaffoldingproteinfunctionalsitesusingdeeplearning
AT baekminkyung scaffoldingproteinfunctionalsitesusingdeeplearning
AT anishchenkoivan scaffoldingproteinfunctionalsitesusingdeeplearning
AT yangwei scaffoldingproteinfunctionalsitesusingdeeplearning
AT hicksderrickr scaffoldingproteinfunctionalsitesusingdeeplearning
AT expositmarc scaffoldingproteinfunctionalsitesusingdeeplearning
AT schlichthaerlethomas scaffoldingproteinfunctionalsitesusingdeeplearning
AT chunjungho scaffoldingproteinfunctionalsitesusingdeeplearning
AT dauparasjustas scaffoldingproteinfunctionalsitesusingdeeplearning
AT bennettnathaniel scaffoldingproteinfunctionalsitesusingdeeplearning
AT wickybasileim scaffoldingproteinfunctionalsitesusingdeeplearning
AT muenksandrew scaffoldingproteinfunctionalsitesusingdeeplearning
AT dimaiofrank scaffoldingproteinfunctionalsitesusingdeeplearning
AT correiabruno scaffoldingproteinfunctionalsitesusingdeeplearning
AT ovchinnikovsergey scaffoldingproteinfunctionalsitesusingdeeplearning
AT bakerdavid scaffoldingproteinfunctionalsitesusingdeeplearning