Cargando…

Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit

OBJECTIVE: The aim of this study was to identify clinical and laboratory phenotype distribution patterns and their usefulness as prognostic markers in COVID-19 patients admitted to the intensive care unit (ICU) at Tygerberg Hospital, Cape Town. METHODS AND RESULTS: A latent class analysis (LCA) mode...

Descripción completa

Detalles Bibliográficos
Autores principales: Sigwadhi, Lovemore N., Tamuzi, Jacques L., Zemlin, Annalise E., Chapanduka, Zivanai C., Allwood, Brian W., Koegelenberg, Coenraad F., Irusen, Elvis M., Lalla, Usha, Ngah, Veranyuy D., Yalew, Anteneh, Savieri, Perseverence, Fwemba, Isaac, Jalavu, Thumeka P., Erasmus, Rajiv T., Matsha, Tandi E., Zumla, Alimuddin, Nyasulu, Peter S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622019/
https://www.ncbi.nlm.nih.gov/pubmed/36339932
http://dx.doi.org/10.1016/j.ijregi.2022.10.004
_version_ 1784821670106628096
author Sigwadhi, Lovemore N.
Tamuzi, Jacques L.
Zemlin, Annalise E.
Chapanduka, Zivanai C.
Allwood, Brian W.
Koegelenberg, Coenraad F.
Irusen, Elvis M.
Lalla, Usha
Ngah, Veranyuy D.
Yalew, Anteneh
Savieri, Perseverence
Fwemba, Isaac
Jalavu, Thumeka P.
Erasmus, Rajiv T.
Matsha, Tandi E.
Zumla, Alimuddin
Nyasulu, Peter S.
author_facet Sigwadhi, Lovemore N.
Tamuzi, Jacques L.
Zemlin, Annalise E.
Chapanduka, Zivanai C.
Allwood, Brian W.
Koegelenberg, Coenraad F.
Irusen, Elvis M.
Lalla, Usha
Ngah, Veranyuy D.
Yalew, Anteneh
Savieri, Perseverence
Fwemba, Isaac
Jalavu, Thumeka P.
Erasmus, Rajiv T.
Matsha, Tandi E.
Zumla, Alimuddin
Nyasulu, Peter S.
author_sort Sigwadhi, Lovemore N.
collection PubMed
description OBJECTIVE: The aim of this study was to identify clinical and laboratory phenotype distribution patterns and their usefulness as prognostic markers in COVID-19 patients admitted to the intensive care unit (ICU) at Tygerberg Hospital, Cape Town. METHODS AND RESULTS: A latent class analysis (LCA) model was applied in a prospective, observational cohort study. Data from 343 COVID-19 patients were analysed. Two distinct phenotypes (1 and 2) were identified, comprising 68.46% and 31.54% of patients, respectively. The phenotype 2 patients were characterized by increased coagulopathy markers (D-dimer, median value 1.73 ng/L vs 0.94 ng/L; p < 0.001), end-organ dysfunction (creatinine, median value 79 µmol/L vs 69.5 µmol/L; p < 0.003), under-perfusion markers (lactate, median value 1.60 mmol/L vs 1.20 mmol/L; p < 0.001), abnormal cardiac function markers (median N‐terminal pro‐brain natriuretic peptide (NT-proBNP) 314 pg/ml vs 63.5 pg/ml; p < 0.001 and median high‐sensitivity cardiac troponin (Hs-TropT) 39 ng/L vs 12 ng/L; p < 0.001), and acute inflammatory syndrome (median neutrophil-to-lymphocyte ratio 15.08 vs 8.68; p < 0.001 and median monocyte value 0.68 × 10(9)/L vs 0.45 × 10(9)/L; p < 0.001). CONCLUSION: The identification of COVID-19 phenotypes and sub-phenotypes in ICU patients could help as a prognostic marker in the day-to-day management of COVID-19 patients admitted to the ICU.
format Online
Article
Text
id pubmed-9622019
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-96220192022-11-01 Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit Sigwadhi, Lovemore N. Tamuzi, Jacques L. Zemlin, Annalise E. Chapanduka, Zivanai C. Allwood, Brian W. Koegelenberg, Coenraad F. Irusen, Elvis M. Lalla, Usha Ngah, Veranyuy D. Yalew, Anteneh Savieri, Perseverence Fwemba, Isaac Jalavu, Thumeka P. Erasmus, Rajiv T. Matsha, Tandi E. Zumla, Alimuddin Nyasulu, Peter S. IJID Reg Coronavirus (COVID-19) Collection OBJECTIVE: The aim of this study was to identify clinical and laboratory phenotype distribution patterns and their usefulness as prognostic markers in COVID-19 patients admitted to the intensive care unit (ICU) at Tygerberg Hospital, Cape Town. METHODS AND RESULTS: A latent class analysis (LCA) model was applied in a prospective, observational cohort study. Data from 343 COVID-19 patients were analysed. Two distinct phenotypes (1 and 2) were identified, comprising 68.46% and 31.54% of patients, respectively. The phenotype 2 patients were characterized by increased coagulopathy markers (D-dimer, median value 1.73 ng/L vs 0.94 ng/L; p < 0.001), end-organ dysfunction (creatinine, median value 79 µmol/L vs 69.5 µmol/L; p < 0.003), under-perfusion markers (lactate, median value 1.60 mmol/L vs 1.20 mmol/L; p < 0.001), abnormal cardiac function markers (median N‐terminal pro‐brain natriuretic peptide (NT-proBNP) 314 pg/ml vs 63.5 pg/ml; p < 0.001 and median high‐sensitivity cardiac troponin (Hs-TropT) 39 ng/L vs 12 ng/L; p < 0.001), and acute inflammatory syndrome (median neutrophil-to-lymphocyte ratio 15.08 vs 8.68; p < 0.001 and median monocyte value 0.68 × 10(9)/L vs 0.45 × 10(9)/L; p < 0.001). CONCLUSION: The identification of COVID-19 phenotypes and sub-phenotypes in ICU patients could help as a prognostic marker in the day-to-day management of COVID-19 patients admitted to the ICU. Elsevier 2022-11-01 /pmc/articles/PMC9622019/ /pubmed/36339932 http://dx.doi.org/10.1016/j.ijregi.2022.10.004 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Coronavirus (COVID-19) Collection
Sigwadhi, Lovemore N.
Tamuzi, Jacques L.
Zemlin, Annalise E.
Chapanduka, Zivanai C.
Allwood, Brian W.
Koegelenberg, Coenraad F.
Irusen, Elvis M.
Lalla, Usha
Ngah, Veranyuy D.
Yalew, Anteneh
Savieri, Perseverence
Fwemba, Isaac
Jalavu, Thumeka P.
Erasmus, Rajiv T.
Matsha, Tandi E.
Zumla, Alimuddin
Nyasulu, Peter S.
Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit
title Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit
title_full Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit
title_fullStr Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit
title_full_unstemmed Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit
title_short Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit
title_sort latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among covid-19 patients admitted to the intensive care unit
topic Coronavirus (COVID-19) Collection
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622019/
https://www.ncbi.nlm.nih.gov/pubmed/36339932
http://dx.doi.org/10.1016/j.ijregi.2022.10.004
work_keys_str_mv AT sigwadhilovemoren latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT tamuzijacquesl latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT zemlinannalisee latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT chapandukazivanaic latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT allwoodbrianw latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT koegelenbergcoenraadf latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT irusenelvism latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT lallausha latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT ngahveranyuyd latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT yalewanteneh latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT savieriperseverence latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT fwembaisaac latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT jalavuthumekap latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT erasmusrajivt latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT matshatandie latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT zumlaalimuddin latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT nyasulupeters latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit
AT latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit