Cargando…
Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit
OBJECTIVE: The aim of this study was to identify clinical and laboratory phenotype distribution patterns and their usefulness as prognostic markers in COVID-19 patients admitted to the intensive care unit (ICU) at Tygerberg Hospital, Cape Town. METHODS AND RESULTS: A latent class analysis (LCA) mode...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622019/ https://www.ncbi.nlm.nih.gov/pubmed/36339932 http://dx.doi.org/10.1016/j.ijregi.2022.10.004 |
_version_ | 1784821670106628096 |
---|---|
author | Sigwadhi, Lovemore N. Tamuzi, Jacques L. Zemlin, Annalise E. Chapanduka, Zivanai C. Allwood, Brian W. Koegelenberg, Coenraad F. Irusen, Elvis M. Lalla, Usha Ngah, Veranyuy D. Yalew, Anteneh Savieri, Perseverence Fwemba, Isaac Jalavu, Thumeka P. Erasmus, Rajiv T. Matsha, Tandi E. Zumla, Alimuddin Nyasulu, Peter S. |
author_facet | Sigwadhi, Lovemore N. Tamuzi, Jacques L. Zemlin, Annalise E. Chapanduka, Zivanai C. Allwood, Brian W. Koegelenberg, Coenraad F. Irusen, Elvis M. Lalla, Usha Ngah, Veranyuy D. Yalew, Anteneh Savieri, Perseverence Fwemba, Isaac Jalavu, Thumeka P. Erasmus, Rajiv T. Matsha, Tandi E. Zumla, Alimuddin Nyasulu, Peter S. |
author_sort | Sigwadhi, Lovemore N. |
collection | PubMed |
description | OBJECTIVE: The aim of this study was to identify clinical and laboratory phenotype distribution patterns and their usefulness as prognostic markers in COVID-19 patients admitted to the intensive care unit (ICU) at Tygerberg Hospital, Cape Town. METHODS AND RESULTS: A latent class analysis (LCA) model was applied in a prospective, observational cohort study. Data from 343 COVID-19 patients were analysed. Two distinct phenotypes (1 and 2) were identified, comprising 68.46% and 31.54% of patients, respectively. The phenotype 2 patients were characterized by increased coagulopathy markers (D-dimer, median value 1.73 ng/L vs 0.94 ng/L; p < 0.001), end-organ dysfunction (creatinine, median value 79 µmol/L vs 69.5 µmol/L; p < 0.003), under-perfusion markers (lactate, median value 1.60 mmol/L vs 1.20 mmol/L; p < 0.001), abnormal cardiac function markers (median N‐terminal pro‐brain natriuretic peptide (NT-proBNP) 314 pg/ml vs 63.5 pg/ml; p < 0.001 and median high‐sensitivity cardiac troponin (Hs-TropT) 39 ng/L vs 12 ng/L; p < 0.001), and acute inflammatory syndrome (median neutrophil-to-lymphocyte ratio 15.08 vs 8.68; p < 0.001 and median monocyte value 0.68 × 10(9)/L vs 0.45 × 10(9)/L; p < 0.001). CONCLUSION: The identification of COVID-19 phenotypes and sub-phenotypes in ICU patients could help as a prognostic marker in the day-to-day management of COVID-19 patients admitted to the ICU. |
format | Online Article Text |
id | pubmed-9622019 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-96220192022-11-01 Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit Sigwadhi, Lovemore N. Tamuzi, Jacques L. Zemlin, Annalise E. Chapanduka, Zivanai C. Allwood, Brian W. Koegelenberg, Coenraad F. Irusen, Elvis M. Lalla, Usha Ngah, Veranyuy D. Yalew, Anteneh Savieri, Perseverence Fwemba, Isaac Jalavu, Thumeka P. Erasmus, Rajiv T. Matsha, Tandi E. Zumla, Alimuddin Nyasulu, Peter S. IJID Reg Coronavirus (COVID-19) Collection OBJECTIVE: The aim of this study was to identify clinical and laboratory phenotype distribution patterns and their usefulness as prognostic markers in COVID-19 patients admitted to the intensive care unit (ICU) at Tygerberg Hospital, Cape Town. METHODS AND RESULTS: A latent class analysis (LCA) model was applied in a prospective, observational cohort study. Data from 343 COVID-19 patients were analysed. Two distinct phenotypes (1 and 2) were identified, comprising 68.46% and 31.54% of patients, respectively. The phenotype 2 patients were characterized by increased coagulopathy markers (D-dimer, median value 1.73 ng/L vs 0.94 ng/L; p < 0.001), end-organ dysfunction (creatinine, median value 79 µmol/L vs 69.5 µmol/L; p < 0.003), under-perfusion markers (lactate, median value 1.60 mmol/L vs 1.20 mmol/L; p < 0.001), abnormal cardiac function markers (median N‐terminal pro‐brain natriuretic peptide (NT-proBNP) 314 pg/ml vs 63.5 pg/ml; p < 0.001 and median high‐sensitivity cardiac troponin (Hs-TropT) 39 ng/L vs 12 ng/L; p < 0.001), and acute inflammatory syndrome (median neutrophil-to-lymphocyte ratio 15.08 vs 8.68; p < 0.001 and median monocyte value 0.68 × 10(9)/L vs 0.45 × 10(9)/L; p < 0.001). CONCLUSION: The identification of COVID-19 phenotypes and sub-phenotypes in ICU patients could help as a prognostic marker in the day-to-day management of COVID-19 patients admitted to the ICU. Elsevier 2022-11-01 /pmc/articles/PMC9622019/ /pubmed/36339932 http://dx.doi.org/10.1016/j.ijregi.2022.10.004 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Coronavirus (COVID-19) Collection Sigwadhi, Lovemore N. Tamuzi, Jacques L. Zemlin, Annalise E. Chapanduka, Zivanai C. Allwood, Brian W. Koegelenberg, Coenraad F. Irusen, Elvis M. Lalla, Usha Ngah, Veranyuy D. Yalew, Anteneh Savieri, Perseverence Fwemba, Isaac Jalavu, Thumeka P. Erasmus, Rajiv T. Matsha, Tandi E. Zumla, Alimuddin Nyasulu, Peter S. Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit |
title | Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit |
title_full | Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit |
title_fullStr | Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit |
title_full_unstemmed | Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit |
title_short | Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit |
title_sort | latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among covid-19 patients admitted to the intensive care unit |
topic | Coronavirus (COVID-19) Collection |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622019/ https://www.ncbi.nlm.nih.gov/pubmed/36339932 http://dx.doi.org/10.1016/j.ijregi.2022.10.004 |
work_keys_str_mv | AT sigwadhilovemoren latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT tamuzijacquesl latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT zemlinannalisee latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT chapandukazivanaic latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT allwoodbrianw latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT koegelenbergcoenraadf latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT irusenelvism latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT lallausha latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT ngahveranyuyd latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT yalewanteneh latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT savieriperseverence latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT fwembaisaac latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT jalavuthumekap latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT erasmusrajivt latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT matshatandie latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT zumlaalimuddin latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT nyasulupeters latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit AT latentclassanalysisaninnovativeapproachforidentificationofclinicalandlaboratorymarkersofdiseaseseverityamongcovid19patientsadmittedtotheintensivecareunit |