Cargando…

Senotherapeutics and Their Molecular Mechanism for Improving Aging

Aging is defined as physiological dysfunction of the body and a key risk factor for human diseases. During the aging process, cellular senescence occurs in response to various extrinsic and intrinsic factors such as radiation-induced DNA damage, the activation of oncogenes, and oxidative stress. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Jooho, Shin, Dong Wook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Applied Pharmacology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622307/
https://www.ncbi.nlm.nih.gov/pubmed/36226551
http://dx.doi.org/10.4062/biomolther.2022.114
Descripción
Sumario:Aging is defined as physiological dysfunction of the body and a key risk factor for human diseases. During the aging process, cellular senescence occurs in response to various extrinsic and intrinsic factors such as radiation-induced DNA damage, the activation of oncogenes, and oxidative stress. These senescent cells accumulate in many tissues and exhibit diverse phenotypes, such as resistance to apoptosis, production of senescence-associated secretory phenotype, cellular flattening, and cellular hypertrophy. They also induce abnormal dysfunction of the microenvironment and damage neighboring cells, eventually causing harmful effects in the development of various chronic diseases such as diabetes, cancer, and neurodegenerative diseases. Thus, pharmacological interventions targeting senescent cells, called senotherapeutics, have been extensively studied. These senotherapeutics provide a novel strategy for extending the health span and improving age-related diseases. In this review, we discuss the current progress in understanding the molecular mechanisms of senotherapeutics and provide insights for developing senotherapeutics.