Cargando…

CRISPRi screening reveals regulators of tau pathology shared between exosomal and vesicle-free tau

The aggregation of the microtubule-associated protein tau is a defining feature of Alzheimer’s disease and other tauopathies. Tau pathology is believed to be driven by free tau aggregates and tau carried within exosome-like extracellular vesicles, both of which propagate trans-synaptically and induc...

Descripción completa

Detalles Bibliográficos
Autores principales: Polanco, Juan Carlos, Akimov, Yevhen, Fernandes, Avinash, Briner, Adam, Hand, Gabriel Rhys, van Roijen, Marloes, Balistreri, Giuseppe, Götz, Jürgen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Life Science Alliance LLC 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622425/
https://www.ncbi.nlm.nih.gov/pubmed/36316035
http://dx.doi.org/10.26508/lsa.202201689
Descripción
Sumario:The aggregation of the microtubule-associated protein tau is a defining feature of Alzheimer’s disease and other tauopathies. Tau pathology is believed to be driven by free tau aggregates and tau carried within exosome-like extracellular vesicles, both of which propagate trans-synaptically and induce tau pathology in recipient neurons by a corrupting process of seeding. Here, we performed a genome-wide CRISPRi screen in tau biosensor cells and identified cellular regulators shared by both mechanisms of tau seeding. We identified ANKLE2, BANF1, NUSAP1, EIF1AD, and VPS18 as the top validated regulators that restrict tau aggregation initiated by both exosomal and vesicle-free tau seeds. None of our validated hits affected the uptake of either form of tau seeds, supporting the notion that they operate through a cell-autonomous mechanism downstream of the seed uptake. Lastly, validation studies with human brain tissue also revealed that several of the identified protein hits are down-regulated in the brains of Alzheimer’s patients, suggesting that their decreased activity may be required for the emergence or progression of tau pathology in the human brain.