Cargando…
Identification and validation of a 9-gene signature for the prognosis of ovarian cancer by integrated bioinformatical analysis
BACKGROUND: Ovarian cancer (OC) is the most lethal malignancy among gynecological cancers worldwide. It is urgent to identify effective biomarkers for the prognosis and diagnosis of OC. METHODS: We analyzed 4 OC Gene Expression Omnibus (GEO) data sets to detect differentially expressed genes (DEGs)....
Autores principales: | Chen, Siping, Yang, Man, Yang, Haikun, Tang, Qiaofei, Gu, Chunming, Wei, Weifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622505/ https://www.ncbi.nlm.nih.gov/pubmed/36330389 http://dx.doi.org/10.21037/atm-22-3752 |
Ejemplares similares
-
Identification of the Hub Genes Associated with the Prognosis of Ovarian Cancer Patients via Integrated Bioinformatics Analysis and Experimental Validation
por: Zhao, Yuzi, et al.
Publicado: (2021) -
Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis
por: Feng, Hao, et al.
Publicado: (2019) -
Identification of prognosis-related genes and construction of multi-regulatory networks in pancreatic cancer microenvironment by bioinformatics analysis
por: Li, Tong, et al.
Publicado: (2020) -
Integrated Bioinformatics Analysis for Identification of the Hub Genes Linked with Prognosis of Ovarian Cancer Patients
por: Li, Xiaofeng, et al.
Publicado: (2022) -
Correction to: Identification of prognosis-related genes and construction of multi-regulatory networks in pancreatic cancer microenvironment by bioinformatics analysis
por: Li, Tong, et al.
Publicado: (2020)