Cargando…

Aberrant gene expression pattern in the glycolysis-cholesterol synthesis axis is linked with immune infiltration and prognosis in prostate cancer: A bioinformatics analysis

Aberrant lipid metabolism is an early event in tumorigenesis and has been found in a variety of tumor types, especially prostate cancer (PCa). Therefore, We hypothesize that PCa can be stratified into metabolic subgroups based on glycolytic and cholesterogenic related genes, and the different subgro...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Yiwen, Song, Jukun, Wu, Qinghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622640/
https://www.ncbi.nlm.nih.gov/pubmed/36316896
http://dx.doi.org/10.1097/MD.0000000000031416
_version_ 1784821817799606272
author Yuan, Yiwen
Song, Jukun
Wu, Qinghua
author_facet Yuan, Yiwen
Song, Jukun
Wu, Qinghua
author_sort Yuan, Yiwen
collection PubMed
description Aberrant lipid metabolism is an early event in tumorigenesis and has been found in a variety of tumor types, especially prostate cancer (PCa). Therefore, We hypothesize that PCa can be stratified into metabolic subgroups based on glycolytic and cholesterogenic related genes, and the different subgroups are closely related to the immune microenvironment. Bioinformatics analysis of genomic, transcriptomic, and clinical data from a comprehensive cohort of PCa patients was performed. Datasets included the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) dataset, GSE70768, our previously published PCa cohort. The unsupervised cluster analysis was employed to stratify PCa samples based on the expression of metabolic-related genes. Four molecular subtypes were identified, named Glycolytic, Cholesterogenic, Mixed, and Quiescent. Each metabolic subtype has specific features. Among the 4 subtypes, the cholesterogenic subtype exhibited better median survival, whereas patients with high expression of glycolytic genes showed the shortest survival. The mitochondrial pyruvate carriers (MPC) 1 exhibited expression difference between PCa metabolic subgroups, but not for MPCs 2. Glycolytic subtypes had lower immune cell scores, while Cholesterogenic subgroups had higher immune cell scores. Our results demonstrated that metabolic classifications based on specific glycolytic and cholesterol-producing pathways provide new biological insights into previously established subtypes and may guide develop personalized therapies for unique tumor metabolism characteristics.
format Online
Article
Text
id pubmed-9622640
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Lippincott Williams & Wilkins
record_format MEDLINE/PubMed
spelling pubmed-96226402022-11-03 Aberrant gene expression pattern in the glycolysis-cholesterol synthesis axis is linked with immune infiltration and prognosis in prostate cancer: A bioinformatics analysis Yuan, Yiwen Song, Jukun Wu, Qinghua Medicine (Baltimore) 3500 Aberrant lipid metabolism is an early event in tumorigenesis and has been found in a variety of tumor types, especially prostate cancer (PCa). Therefore, We hypothesize that PCa can be stratified into metabolic subgroups based on glycolytic and cholesterogenic related genes, and the different subgroups are closely related to the immune microenvironment. Bioinformatics analysis of genomic, transcriptomic, and clinical data from a comprehensive cohort of PCa patients was performed. Datasets included the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) dataset, GSE70768, our previously published PCa cohort. The unsupervised cluster analysis was employed to stratify PCa samples based on the expression of metabolic-related genes. Four molecular subtypes were identified, named Glycolytic, Cholesterogenic, Mixed, and Quiescent. Each metabolic subtype has specific features. Among the 4 subtypes, the cholesterogenic subtype exhibited better median survival, whereas patients with high expression of glycolytic genes showed the shortest survival. The mitochondrial pyruvate carriers (MPC) 1 exhibited expression difference between PCa metabolic subgroups, but not for MPCs 2. Glycolytic subtypes had lower immune cell scores, while Cholesterogenic subgroups had higher immune cell scores. Our results demonstrated that metabolic classifications based on specific glycolytic and cholesterol-producing pathways provide new biological insights into previously established subtypes and may guide develop personalized therapies for unique tumor metabolism characteristics. Lippincott Williams & Wilkins 2022-10-28 /pmc/articles/PMC9622640/ /pubmed/36316896 http://dx.doi.org/10.1097/MD.0000000000031416 Text en Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc. https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC) (https://creativecommons.org/licenses/by-nc/4.0/) , where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.
spellingShingle 3500
Yuan, Yiwen
Song, Jukun
Wu, Qinghua
Aberrant gene expression pattern in the glycolysis-cholesterol synthesis axis is linked with immune infiltration and prognosis in prostate cancer: A bioinformatics analysis
title Aberrant gene expression pattern in the glycolysis-cholesterol synthesis axis is linked with immune infiltration and prognosis in prostate cancer: A bioinformatics analysis
title_full Aberrant gene expression pattern in the glycolysis-cholesterol synthesis axis is linked with immune infiltration and prognosis in prostate cancer: A bioinformatics analysis
title_fullStr Aberrant gene expression pattern in the glycolysis-cholesterol synthesis axis is linked with immune infiltration and prognosis in prostate cancer: A bioinformatics analysis
title_full_unstemmed Aberrant gene expression pattern in the glycolysis-cholesterol synthesis axis is linked with immune infiltration and prognosis in prostate cancer: A bioinformatics analysis
title_short Aberrant gene expression pattern in the glycolysis-cholesterol synthesis axis is linked with immune infiltration and prognosis in prostate cancer: A bioinformatics analysis
title_sort aberrant gene expression pattern in the glycolysis-cholesterol synthesis axis is linked with immune infiltration and prognosis in prostate cancer: a bioinformatics analysis
topic 3500
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622640/
https://www.ncbi.nlm.nih.gov/pubmed/36316896
http://dx.doi.org/10.1097/MD.0000000000031416
work_keys_str_mv AT yuanyiwen aberrantgeneexpressionpatternintheglycolysischolesterolsynthesisaxisislinkedwithimmuneinfiltrationandprognosisinprostatecancerabioinformaticsanalysis
AT songjukun aberrantgeneexpressionpatternintheglycolysischolesterolsynthesisaxisislinkedwithimmuneinfiltrationandprognosisinprostatecancerabioinformaticsanalysis
AT wuqinghua aberrantgeneexpressionpatternintheglycolysischolesterolsynthesisaxisislinkedwithimmuneinfiltrationandprognosisinprostatecancerabioinformaticsanalysis