Cargando…

Prediction of early-stage melanoma recurrence using clinical and histopathologic features

Prognostic analysis for early-stage (stage I/II) melanomas is of paramount importance for customized surveillance and treatment plans. Since immune checkpoint inhibitors have recently been approved for stage IIB and IIC melanomas, prognostic tools to identify patients at high risk of recurrence have...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Guihong, Nguyen, Nga, Liu, Feng, DeSimone, Mia S., Leung, Bonnie W., Rajeh, Ahmad, Collier, Michael R., Choi, Min Seok, Amadife, Munachimso, Tang, Kimberly, Zhang, Shijia, Phillipps, Jordan S., Jairath, Ruple, Alexander, Nora A., Hua, Yining, Jiao, Meng, Chen, Wenxin, Ho, Diane, Duey, Stacey, Németh, István Balázs, Marko-Varga, Gyorgy, Valdés, Jeovanis Gil, Liu, David, Boland, Genevieve M., Gusev, Alexander, Sorger, Peter K., Yu, Kun-Hsing, Semenov, Yevgeniy R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622809/
https://www.ncbi.nlm.nih.gov/pubmed/36316482
http://dx.doi.org/10.1038/s41698-022-00321-4
_version_ 1784821857260666880
author Wan, Guihong
Nguyen, Nga
Liu, Feng
DeSimone, Mia S.
Leung, Bonnie W.
Rajeh, Ahmad
Collier, Michael R.
Choi, Min Seok
Amadife, Munachimso
Tang, Kimberly
Zhang, Shijia
Phillipps, Jordan S.
Jairath, Ruple
Alexander, Nora A.
Hua, Yining
Jiao, Meng
Chen, Wenxin
Ho, Diane
Duey, Stacey
Németh, István Balázs
Marko-Varga, Gyorgy
Valdés, Jeovanis Gil
Liu, David
Boland, Genevieve M.
Gusev, Alexander
Sorger, Peter K.
Yu, Kun-Hsing
Semenov, Yevgeniy R.
author_facet Wan, Guihong
Nguyen, Nga
Liu, Feng
DeSimone, Mia S.
Leung, Bonnie W.
Rajeh, Ahmad
Collier, Michael R.
Choi, Min Seok
Amadife, Munachimso
Tang, Kimberly
Zhang, Shijia
Phillipps, Jordan S.
Jairath, Ruple
Alexander, Nora A.
Hua, Yining
Jiao, Meng
Chen, Wenxin
Ho, Diane
Duey, Stacey
Németh, István Balázs
Marko-Varga, Gyorgy
Valdés, Jeovanis Gil
Liu, David
Boland, Genevieve M.
Gusev, Alexander
Sorger, Peter K.
Yu, Kun-Hsing
Semenov, Yevgeniy R.
author_sort Wan, Guihong
collection PubMed
description Prognostic analysis for early-stage (stage I/II) melanomas is of paramount importance for customized surveillance and treatment plans. Since immune checkpoint inhibitors have recently been approved for stage IIB and IIC melanomas, prognostic tools to identify patients at high risk of recurrence have become even more critical. This study aims to assess the effectiveness of machine-learning algorithms in predicting melanoma recurrence using clinical and histopathologic features from Electronic Health Records (EHRs). We collected 1720 early-stage melanomas: 1172 from the Mass General Brigham healthcare system (MGB) and 548 from the Dana-Farber Cancer Institute (DFCI). We extracted 36 clinicopathologic features and used them to predict the recurrence risk with supervised machine-learning algorithms. Models were evaluated internally and externally: (1) five-fold cross-validation of the MGB cohort; (2) the MGB cohort for training and the DFCI cohort for testing independently. In the internal and external validations, respectively, we achieved a recurrence classification performance of AUC: 0.845 and 0.812, and a time-to-event prediction performance of time-dependent AUC: 0.853 and 0.820. Breslow tumor thickness and mitotic rate were identified as the most predictive features. Our results suggest that machine-learning algorithms can extract predictive signals from clinicopathologic features for early-stage melanoma recurrence prediction, which will enable the identification of patients that may benefit from adjuvant immunotherapy.
format Online
Article
Text
id pubmed-9622809
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-96228092022-11-02 Prediction of early-stage melanoma recurrence using clinical and histopathologic features Wan, Guihong Nguyen, Nga Liu, Feng DeSimone, Mia S. Leung, Bonnie W. Rajeh, Ahmad Collier, Michael R. Choi, Min Seok Amadife, Munachimso Tang, Kimberly Zhang, Shijia Phillipps, Jordan S. Jairath, Ruple Alexander, Nora A. Hua, Yining Jiao, Meng Chen, Wenxin Ho, Diane Duey, Stacey Németh, István Balázs Marko-Varga, Gyorgy Valdés, Jeovanis Gil Liu, David Boland, Genevieve M. Gusev, Alexander Sorger, Peter K. Yu, Kun-Hsing Semenov, Yevgeniy R. NPJ Precis Oncol Article Prognostic analysis for early-stage (stage I/II) melanomas is of paramount importance for customized surveillance and treatment plans. Since immune checkpoint inhibitors have recently been approved for stage IIB and IIC melanomas, prognostic tools to identify patients at high risk of recurrence have become even more critical. This study aims to assess the effectiveness of machine-learning algorithms in predicting melanoma recurrence using clinical and histopathologic features from Electronic Health Records (EHRs). We collected 1720 early-stage melanomas: 1172 from the Mass General Brigham healthcare system (MGB) and 548 from the Dana-Farber Cancer Institute (DFCI). We extracted 36 clinicopathologic features and used them to predict the recurrence risk with supervised machine-learning algorithms. Models were evaluated internally and externally: (1) five-fold cross-validation of the MGB cohort; (2) the MGB cohort for training and the DFCI cohort for testing independently. In the internal and external validations, respectively, we achieved a recurrence classification performance of AUC: 0.845 and 0.812, and a time-to-event prediction performance of time-dependent AUC: 0.853 and 0.820. Breslow tumor thickness and mitotic rate were identified as the most predictive features. Our results suggest that machine-learning algorithms can extract predictive signals from clinicopathologic features for early-stage melanoma recurrence prediction, which will enable the identification of patients that may benefit from adjuvant immunotherapy. Nature Publishing Group UK 2022-10-31 /pmc/articles/PMC9622809/ /pubmed/36316482 http://dx.doi.org/10.1038/s41698-022-00321-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Wan, Guihong
Nguyen, Nga
Liu, Feng
DeSimone, Mia S.
Leung, Bonnie W.
Rajeh, Ahmad
Collier, Michael R.
Choi, Min Seok
Amadife, Munachimso
Tang, Kimberly
Zhang, Shijia
Phillipps, Jordan S.
Jairath, Ruple
Alexander, Nora A.
Hua, Yining
Jiao, Meng
Chen, Wenxin
Ho, Diane
Duey, Stacey
Németh, István Balázs
Marko-Varga, Gyorgy
Valdés, Jeovanis Gil
Liu, David
Boland, Genevieve M.
Gusev, Alexander
Sorger, Peter K.
Yu, Kun-Hsing
Semenov, Yevgeniy R.
Prediction of early-stage melanoma recurrence using clinical and histopathologic features
title Prediction of early-stage melanoma recurrence using clinical and histopathologic features
title_full Prediction of early-stage melanoma recurrence using clinical and histopathologic features
title_fullStr Prediction of early-stage melanoma recurrence using clinical and histopathologic features
title_full_unstemmed Prediction of early-stage melanoma recurrence using clinical and histopathologic features
title_short Prediction of early-stage melanoma recurrence using clinical and histopathologic features
title_sort prediction of early-stage melanoma recurrence using clinical and histopathologic features
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622809/
https://www.ncbi.nlm.nih.gov/pubmed/36316482
http://dx.doi.org/10.1038/s41698-022-00321-4
work_keys_str_mv AT wanguihong predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT nguyennga predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT liufeng predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT desimonemias predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT leungbonniew predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT rajehahmad predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT colliermichaelr predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT choiminseok predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT amadifemunachimso predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT tangkimberly predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT zhangshijia predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT phillippsjordans predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT jairathruple predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT alexandernoraa predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT huayining predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT jiaomeng predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT chenwenxin predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT hodiane predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT dueystacey predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT nemethistvanbalazs predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT markovargagyorgy predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT valdesjeovanisgil predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT liudavid predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT bolandgenevievem predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT gusevalexander predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT sorgerpeterk predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT yukunhsing predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures
AT semenovyevgeniyr predictionofearlystagemelanomarecurrenceusingclinicalandhistopathologicfeatures