Cargando…
Improving predictive performance in incident heart failure using machine learning and multi-center data
OBJECTIVE: To mitigate the burden associated with heart failure (HF), primary prevention is of the utmost importance. To improve early risk stratification, advanced computational methods such as machine learning (ML) capturing complex individual patterns in large data might be necessary. Therefore,...
Autores principales: | Sabovčik, František, Ntalianis, Evangelos, Cauwenberghs, Nicholas, Kuznetsova, Tatiana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9623026/ https://www.ncbi.nlm.nih.gov/pubmed/36330000 http://dx.doi.org/10.3389/fcvm.2022.1011071 |
Ejemplares similares
-
Echocardiographic phenogrouping by machine learning for risk stratification in the general population
por: Sabovčik, František, et al.
Publicado: (2021) -
Proteomic profiling for detection of early‐stage heart failure in the community
por: Cauwenberghs, Nicholas, et al.
Publicado: (2021) -
Integrative Interpretation of Cardiopulmonary Exercise Tests for Cardiovascular Outcome Prediction: A Machine Learning Approach
por: Cauwenberghs, Nicholas, et al.
Publicado: (2023) -
Editorial: Novel Risk Predicting System for Heart Failure
por: Liu, Chen, et al.
Publicado: (2022) -
Evaluation of diastole by echocardiography for detecting early cardiac dysfunction: an outcome study
por: Kuznetsova, Tatiana, et al.
Publicado: (2022)