Cargando…
Effects of trunk posture on cardiovascular and autonomic nervous systems: A pilot study
Objective: Although regular and moderate physical activity has been shown to improve the cardiovascular and autonomic nervous systems, little has been done to study the effects of postural changes in the movement on the heart and autonomic nervous system. To uncover changes in cardiac function and a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9623330/ https://www.ncbi.nlm.nih.gov/pubmed/36330208 http://dx.doi.org/10.3389/fphys.2022.1009806 |
_version_ | 1784821974756753408 |
---|---|
author | Wang, Hao Gao, Xiaolin Shi, Yongjin Wu, Dongzhe Li, Chuangtao Wang, Wendi |
author_facet | Wang, Hao Gao, Xiaolin Shi, Yongjin Wu, Dongzhe Li, Chuangtao Wang, Wendi |
author_sort | Wang, Hao |
collection | PubMed |
description | Objective: Although regular and moderate physical activity has been shown to improve the cardiovascular and autonomic nervous systems, little has been done to study the effects of postural changes in the movement on the heart and autonomic nervous system. To uncover changes in cardiac function and autonomic nerves induced by different underlying posture transitions and explore which trunk postures lead to chronic sympathetic activation. Therefore, this study investigated the effects of trunk posture on the cardiovascular and autonomic nervous systems. Methods: Twelve male subjects (age 24.7 ± 1.3) underwent this study. The non-invasive cardiac output NICOM monitoring equipment and the FIRSTBEAT system are used to dynamically monitor seven trunk postures in the sitting position simultaneously (neutral position, posterior extension, forward flexion, left lateral flexion, right lateral flexion, left rotation, right rotation). Each posture was maintained for 3 min, and the interval between each movement was 3 min to ensure that each index returned to the baseline level. Repeated analysis of variance test was used to compare and analyze the differences in human cardiac function, heart rate variability index, and respiratory rate under different postures. Results: Compared with the related indicators of cardiac output in a neutral trunk position: the cardiac index (CI) was significantly reduced in forwarding flexion and left rotation (3.48 ± 0.34 vs. 3.21 ± 0.50; 3.48 ± 0.34 vs. 3.21 ± 0.46, Δ L/(min/m(2))) (p = 0.016, p = 0.013), cardiac output decreased significantly (6.49 ± 0.78 vs. 5.93 ± 0.90; 6.49 ± 0.78 vs. 6.00 ± 0.96, Δ L/min) (p = 0.006, p = 0.014), the stroke volume (stroke volume)decreased significantly (87.90 ± 15.10 vs. 81.04 ± 16.35; 87.90 ± 15.10 vs. 79.24 ± 16.83, Δ ml/beat) (p = 0.017, p = 0.0003); heart rate increased significantly in posterior extension (75.08 ± 10.43 vs. 78.42 ± 10.18, Δ beat/min) (p = 0.001); left rotation stroke volume index (SVI) decreased significantly (47.28 ± 7.97 vs. 46.14 ± 8.06, Δ ml/m(2)) (p = 0.0003); in the analysis of HRV-related indicators, compared with the neutral trunk position, the LF/HF of the posterior extension was significantly increased (1.90 ± 1.38 vs. 3.00 ± 1.17, p = 0.037), and the LF/HF of the forward flexion was significantly increased (1.90 ± 1.38 vs. 2.85 ± 1.41, p = 0.041), and the frequency-domain index LF/HF of right rotation was significantly increased (1.90 ± 1.38 vs. 4.06 ± 2.19, p = 0.008). There was no significant difference in respiratory rate (p > 0.05). Conclusion: A neutral trunk is the best resting position, and deviations from a neutral trunk position can affect the cardiovascular and autonomic nervous systems, resulting in decreased stroke volume, increased heart rate, and relative activation of sympathetic tone. |
format | Online Article Text |
id | pubmed-9623330 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96233302022-11-02 Effects of trunk posture on cardiovascular and autonomic nervous systems: A pilot study Wang, Hao Gao, Xiaolin Shi, Yongjin Wu, Dongzhe Li, Chuangtao Wang, Wendi Front Physiol Physiology Objective: Although regular and moderate physical activity has been shown to improve the cardiovascular and autonomic nervous systems, little has been done to study the effects of postural changes in the movement on the heart and autonomic nervous system. To uncover changes in cardiac function and autonomic nerves induced by different underlying posture transitions and explore which trunk postures lead to chronic sympathetic activation. Therefore, this study investigated the effects of trunk posture on the cardiovascular and autonomic nervous systems. Methods: Twelve male subjects (age 24.7 ± 1.3) underwent this study. The non-invasive cardiac output NICOM monitoring equipment and the FIRSTBEAT system are used to dynamically monitor seven trunk postures in the sitting position simultaneously (neutral position, posterior extension, forward flexion, left lateral flexion, right lateral flexion, left rotation, right rotation). Each posture was maintained for 3 min, and the interval between each movement was 3 min to ensure that each index returned to the baseline level. Repeated analysis of variance test was used to compare and analyze the differences in human cardiac function, heart rate variability index, and respiratory rate under different postures. Results: Compared with the related indicators of cardiac output in a neutral trunk position: the cardiac index (CI) was significantly reduced in forwarding flexion and left rotation (3.48 ± 0.34 vs. 3.21 ± 0.50; 3.48 ± 0.34 vs. 3.21 ± 0.46, Δ L/(min/m(2))) (p = 0.016, p = 0.013), cardiac output decreased significantly (6.49 ± 0.78 vs. 5.93 ± 0.90; 6.49 ± 0.78 vs. 6.00 ± 0.96, Δ L/min) (p = 0.006, p = 0.014), the stroke volume (stroke volume)decreased significantly (87.90 ± 15.10 vs. 81.04 ± 16.35; 87.90 ± 15.10 vs. 79.24 ± 16.83, Δ ml/beat) (p = 0.017, p = 0.0003); heart rate increased significantly in posterior extension (75.08 ± 10.43 vs. 78.42 ± 10.18, Δ beat/min) (p = 0.001); left rotation stroke volume index (SVI) decreased significantly (47.28 ± 7.97 vs. 46.14 ± 8.06, Δ ml/m(2)) (p = 0.0003); in the analysis of HRV-related indicators, compared with the neutral trunk position, the LF/HF of the posterior extension was significantly increased (1.90 ± 1.38 vs. 3.00 ± 1.17, p = 0.037), and the LF/HF of the forward flexion was significantly increased (1.90 ± 1.38 vs. 2.85 ± 1.41, p = 0.041), and the frequency-domain index LF/HF of right rotation was significantly increased (1.90 ± 1.38 vs. 4.06 ± 2.19, p = 0.008). There was no significant difference in respiratory rate (p > 0.05). Conclusion: A neutral trunk is the best resting position, and deviations from a neutral trunk position can affect the cardiovascular and autonomic nervous systems, resulting in decreased stroke volume, increased heart rate, and relative activation of sympathetic tone. Frontiers Media S.A. 2022-10-18 /pmc/articles/PMC9623330/ /pubmed/36330208 http://dx.doi.org/10.3389/fphys.2022.1009806 Text en Copyright © 2022 Wang, Gao, Shi, Wu, Li and Wang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Wang, Hao Gao, Xiaolin Shi, Yongjin Wu, Dongzhe Li, Chuangtao Wang, Wendi Effects of trunk posture on cardiovascular and autonomic nervous systems: A pilot study |
title | Effects of trunk posture on cardiovascular and autonomic nervous systems: A pilot study |
title_full | Effects of trunk posture on cardiovascular and autonomic nervous systems: A pilot study |
title_fullStr | Effects of trunk posture on cardiovascular and autonomic nervous systems: A pilot study |
title_full_unstemmed | Effects of trunk posture on cardiovascular and autonomic nervous systems: A pilot study |
title_short | Effects of trunk posture on cardiovascular and autonomic nervous systems: A pilot study |
title_sort | effects of trunk posture on cardiovascular and autonomic nervous systems: a pilot study |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9623330/ https://www.ncbi.nlm.nih.gov/pubmed/36330208 http://dx.doi.org/10.3389/fphys.2022.1009806 |
work_keys_str_mv | AT wanghao effectsoftrunkpostureoncardiovascularandautonomicnervoussystemsapilotstudy AT gaoxiaolin effectsoftrunkpostureoncardiovascularandautonomicnervoussystemsapilotstudy AT shiyongjin effectsoftrunkpostureoncardiovascularandautonomicnervoussystemsapilotstudy AT wudongzhe effectsoftrunkpostureoncardiovascularandautonomicnervoussystemsapilotstudy AT lichuangtao effectsoftrunkpostureoncardiovascularandautonomicnervoussystemsapilotstudy AT wangwendi effectsoftrunkpostureoncardiovascularandautonomicnervoussystemsapilotstudy |