Cargando…
Origin of the ease of association of color names: Comparison between humans and AI
Rapid evolution of artificial intelligence (AI) based on deep neural networks has resulted in artificial systems such as generative pre-trained transformer 3 (GPT-3), which can generate human-like language. Such a system may provide a novel platform for studying how human perception is related to kn...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9623380/ https://www.ncbi.nlm.nih.gov/pubmed/36330043 http://dx.doi.org/10.1177/20416695221131832 |
_version_ | 1784821986274312192 |
---|---|
author | Komatsu, Hidehiko Maeno, Ami Watanabe, Eiji |
author_facet | Komatsu, Hidehiko Maeno, Ami Watanabe, Eiji |
author_sort | Komatsu, Hidehiko |
collection | PubMed |
description | Rapid evolution of artificial intelligence (AI) based on deep neural networks has resulted in artificial systems such as generative pre-trained transformer 3 (GPT-3), which can generate human-like language. Such a system may provide a novel platform for studying how human perception is related to knowledge and the ability of language generation. We compared the frequency distribution of basic color terms in the answers of human subjects and GPT-3 when both were asked similar questions regarding color names associated with the letters of the alphabet. We found that GPT-3 generated basic color terms at a frequency very similar to that of human non-synaesthetes. A similar frequency was observed when color names associated with numerals were tested indicating that simple co-occurrence of alphabet and color word in the trained dataset cannot explain the results. We suggest that the proposed experimental framework using the latest AI models has the potential to explore the mechanisms of human perception. |
format | Online Article Text |
id | pubmed-9623380 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-96233802022-11-02 Origin of the ease of association of color names: Comparison between humans and AI Komatsu, Hidehiko Maeno, Ami Watanabe, Eiji Iperception Short Report Rapid evolution of artificial intelligence (AI) based on deep neural networks has resulted in artificial systems such as generative pre-trained transformer 3 (GPT-3), which can generate human-like language. Such a system may provide a novel platform for studying how human perception is related to knowledge and the ability of language generation. We compared the frequency distribution of basic color terms in the answers of human subjects and GPT-3 when both were asked similar questions regarding color names associated with the letters of the alphabet. We found that GPT-3 generated basic color terms at a frequency very similar to that of human non-synaesthetes. A similar frequency was observed when color names associated with numerals were tested indicating that simple co-occurrence of alphabet and color word in the trained dataset cannot explain the results. We suggest that the proposed experimental framework using the latest AI models has the potential to explore the mechanisms of human perception. SAGE Publications 2022-10-26 /pmc/articles/PMC9623380/ /pubmed/36330043 http://dx.doi.org/10.1177/20416695221131832 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Short Report Komatsu, Hidehiko Maeno, Ami Watanabe, Eiji Origin of the ease of association of color names: Comparison between humans and AI |
title | Origin of the ease of association of color names: Comparison between
humans and AI |
title_full | Origin of the ease of association of color names: Comparison between
humans and AI |
title_fullStr | Origin of the ease of association of color names: Comparison between
humans and AI |
title_full_unstemmed | Origin of the ease of association of color names: Comparison between
humans and AI |
title_short | Origin of the ease of association of color names: Comparison between
humans and AI |
title_sort | origin of the ease of association of color names: comparison between
humans and ai |
topic | Short Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9623380/ https://www.ncbi.nlm.nih.gov/pubmed/36330043 http://dx.doi.org/10.1177/20416695221131832 |
work_keys_str_mv | AT komatsuhidehiko originoftheeaseofassociationofcolornamescomparisonbetweenhumansandai AT maenoami originoftheeaseofassociationofcolornamescomparisonbetweenhumansandai AT watanabeeiji originoftheeaseofassociationofcolornamescomparisonbetweenhumansandai |