Cargando…
ATP levels influence cell movement during the mound phase in Dictyostelium discoideum as revealed by ATP visualization and simulation
Cell migration plays an important role in multicellular organism development. The cellular slime mold Dictyostelium discoideum is a useful model organism for the study of cell migration during development. Although cellular ATP levels are known to determine cell fate during development, the underlyi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9623536/ https://www.ncbi.nlm.nih.gov/pubmed/36054629 http://dx.doi.org/10.1002/2211-5463.13480 |
Sumario: | Cell migration plays an important role in multicellular organism development. The cellular slime mold Dictyostelium discoideum is a useful model organism for the study of cell migration during development. Although cellular ATP levels are known to determine cell fate during development, the underlying mechanism remains unclear. Here, we report that ATP‐rich cells efficiently move to the central tip region of the mound against rotational movement during the mound phase. A simulation analysis based on an agent‐based model reproduces the movement of ATP‐rich cells observed in the experiments. These findings indicate that ATP‐rich cells have the ability to move against the bulk flow of cells, suggesting a mechanism by which high ATP levels determine the cell fate of differentiation. |
---|