Cargando…

Optical Oxygen Sensors Show Reversible Cross-Talk and/or Degradation in the Presence of Nitrogen Dioxide

[Image: see text] A variety of luminescent dyes including the most common indicators for optical oxygen sensors were investigated in regard to their stability and photophysical properties in the presence of nitrogen dioxide. The dyes were immobilized in polystyrene and subjected to NO(2) concentrati...

Descripción completa

Detalles Bibliográficos
Autores principales: Dalfen, Irene, Pol, Arjan, Borisov, Sergey M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9623579/
https://www.ncbi.nlm.nih.gov/pubmed/36109879
http://dx.doi.org/10.1021/acssensors.2c01385
Descripción
Sumario:[Image: see text] A variety of luminescent dyes including the most common indicators for optical oxygen sensors were investigated in regard to their stability and photophysical properties in the presence of nitrogen dioxide. The dyes were immobilized in polystyrene and subjected to NO(2) concentrations from 40 to 5500 ppm. The majority of dyes show fast degradation of optical properties due to the reaction with NO(2). The class of phosphorescent metalloporphyrins shows the highest resistance against nitrogen dioxide. Among them, palladium(II) and platinum(II) complexes of octasubstituted sulfonylated benzoporphyrins are identified as the most stable dyes with almost no decomposition in the presence of NO(2). The phosphorescence of these dyes is reversibly quenched by nitrogen dioxide. Immobilized in various polymeric matrices, the sulfonylated Pt(II) benzoporphyrin demonstrates about one order of magnitude more efficient quenching by NO(2) than by molecular oxygen. Our study demonstrates that virtually all commercially available and reported optical oxygen sensors are likely to show either irreversible decomposition in the presence of nitrogen dioxide or reversible luminescence quenching. They should be used with extreme caution if NO(2) is present in relatively high concentrations or it may be generated from other species such as nitric oxide. As an important consequence of nearly anoxic systems, production of nitrogen dioxide or nitric oxide may be therefore erroneously interpreted as an increase in oxygen concentration.