Cargando…
Forecasting COVID-19 cases using time series modeling and association rule mining
BACKGROUND: The aim of this study was to evaluate the most effective combination of autoregressive integrated moving average (ARIMA), a time series model, and association rule mining (ARM) techniques to identify meaningful prognostic factors and predict the number of cases for efficient COVID-19 cri...
Autores principales: | Somyanonthanakul, Rachasak, Warin, Kritsasith, Amasiri, Watchara, Mairiang, Karicha, Mingmalairak, Chatchai, Panichkitkosolkul, Wararit, Silanun, Krittin, Theeramunkong, Thanaruk, Nitikraipot, Surapon, Suebnukarn, Siriwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9624022/ https://www.ncbi.nlm.nih.gov/pubmed/36316659 http://dx.doi.org/10.1186/s12874-022-01755-x |
Ejemplares similares
-
Analysis of Characteristics and Clinical Outcomes for Crisis Management during the Four Waves of the COVID-19 Pandemic
por: Amasiri, Watchara, et al.
Publicado: (2021) -
AI-based analysis of oral lesions using novel deep convolutional neural networks for early detection of oral cancer
por: Warin, Kritsasith, et al.
Publicado: (2022) -
Maxillofacial fracture detection and classification in computed tomography images using convolutional neural network-based models
por: Warin, Kritsasith, et al.
Publicado: (2023) -
Distant Supervision with Transductive Learning for Adverse Drug Reaction Identification from Electronic Medical Records
por: Taewijit, Siriwon, et al.
Publicado: (2017) -
Corrigendum to “Distant Supervision with Transductive Learning for Adverse Drug Reaction Identification from Electronic Medical Records”
por: Taewijit, Siriwon, et al.
Publicado: (2018)