Cargando…
MLAGO: machine learning-aided global optimization for Michaelis constant estimation of kinetic modeling
BACKGROUND: Kinetic modeling is a powerful tool for understanding the dynamic behavior of biochemical systems. For kinetic modeling, determination of a number of kinetic parameters, such as the Michaelis constant (K(m)), is necessary, and global optimization algorithms have long been used for parame...
Autores principales: | Maeda, Kazuhiro, Hatae, Aoi, Sakai, Yukie, Boogerd, Fred C., Kurata, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9624028/ https://www.ncbi.nlm.nih.gov/pubmed/36319952 http://dx.doi.org/10.1186/s12859-022-05009-x |
Ejemplares similares
-
Henri-Michaelis-Menten kinetics of reversible enzymic reactions, and the determination of rate constants from kinetic constants
por: Barnsley, Eric A.
Publicado: (2022) -
Beyond the Michaelis-Menten equation: Accurate and efficient estimation of enzyme kinetic parameters
por: Choi, Boseung, et al.
Publicado: (2017) -
Extensions to Michaelis-Menten Kinetics for Single Parameters
por: Ariyawansha, R. T. K., et al.
Publicado: (2018) -
AI delivers Michaelis constants as fuel for genome-scale metabolic models
por: Antolin, Albert A., et al.
Publicado: (2021) -
Ranking network mechanisms by how they fit diverse experiments and deciding on E. coli's ammonium transport and assimilation network
por: Maeda, Kazuhiro, et al.
Publicado: (2019)