Cargando…
Machine learning in medicine: a practical introduction to techniques for data pre-processing, hyperparameter tuning, and model comparison
BACKGROUND: There is growing enthusiasm for the application of machine learning (ML) and artificial intelligence (AI) techniques to clinical research and practice. However, instructions on how to develop robust high-quality ML and AI in medicine are scarce. In this paper, we provide a practical exam...
Autores principales: | Pfob, André, Lu, Sheng-Chieh, Sidey-Gibbons, Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9624048/ https://www.ncbi.nlm.nih.gov/pubmed/36319956 http://dx.doi.org/10.1186/s12874-022-01758-8 |
Ejemplares similares
-
Machine learning in medicine: a practical introduction
por: Sidey-Gibbons, Jenni A. M., et al.
Publicado: (2019) -
Machine learning in medicine: a practical introduction to natural language processing
por: Harrison, Conrad J., et al.
Publicado: (2021) -
ASO Author Reflections: Enhancing Surgical Decision-Making for Breast Reconstruction—Machine Learning-Driven Prediction of Postoperative Quality of Life
por: Xu, Cai, et al.
Publicado: (2023) -
Machine learning models for 180-day mortality prediction of patients with advanced cancer using patient-reported symptom data
por: Xu, Cai, et al.
Publicado: (2022) -
Machine Learning–Based Short-Term Mortality Prediction Models for Patients With Cancer Using Electronic Health Record Data: Systematic Review and Critical Appraisal
por: Lu, Sheng-Chieh, et al.
Publicado: (2022)