Cargando…

Taurine-Upregulated Gene 1 Attenuates Cerebral Angiogenesis following Ischemic Stroke in Rats

OBJECTIVE: Angiogenesis is one of the therapeutic targets of cerebral infarction. Long noncoding RNAs (lncRNAs) can regulate the pathological process of angiogenesis following ischemic stroke. Taurine-upregulated gene 1 (TUG1), an lncRNA, is correlated to ischemic stroke. We intended to determine th...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Fei, Yu, Jun-Hua, Jiang, Hong-Xiang, Zhang, Hui-Kai, Cai, Qiang, Liu, Zai-Ming, Li, Ming-Chang, Chen, Qian-Xue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626194/
https://www.ncbi.nlm.nih.gov/pubmed/36330459
http://dx.doi.org/10.1155/2022/1037525
Descripción
Sumario:OBJECTIVE: Angiogenesis is one of the therapeutic targets of cerebral infarction. Long noncoding RNAs (lncRNAs) can regulate the pathological process of angiogenesis following ischemic stroke. Taurine-upregulated gene 1 (TUG1), an lncRNA, is correlated to ischemic stroke. We intended to determine the effect of TUG1 on angiogenesis following an ischemic stroke. MATERIALS AND METHODS: Middle cerebral artery occlusion (MCAO) was adopted to build a focal ischemic model of the rat brain, and pcDNA-TUG1 and miR-26a mimics were injected into rats. Neurological function was estimated through modified neurological severity scores. The volume of focal brain infarction was calculated through 2,3,5-triphenyltetrazolium chloride staining. The level of TUG1 and miR-26a was measured by PCR. The expression of vascular endothelial growth factor (VEGF) and CD31 was checked using immunohistochemistry and western blot. The correlation between miR-26a and TUG1 was verified through a luciferase reporter assay. RESULTS: TUG1 increased noticeably while miR-26a was markedly reduced in MCAO rats. Overexpression of miR-26a improved neurological function recovery and enhanced cerebral angiogenesis in MCAO rats. TUG1 overexpression aggravated neurological deficits and suppressed cerebral angiogenesis in MCAO rats. Bioinformatics analysis revealed that miR-26a was one of the predicted targets of TUG1. Furthermore, TUG1 combined with miR-26a to regulate angiogenesis. TUG1 overexpression antagonized the role of miR-26a in neurological recovery and angiogenesis in MCAO rats. CONCLUSIONS: TUG1/miR-26a, which may act as a regulatory axis in angiogenesis following ischemic stroke, can be considered a potential target for cerebral infarction therapy.