Cargando…

The Evaluation of Skin Turgor in Relation to Changes in Intracranial Pressure in Patients After Decompressive Hemicraniectomy

Introduction Decompressive hemicraniectomies have been the mainstay of treating medically refractory elevated intracranial pressures (ICPs). Afterward, ICP continues to be monitored. However, the reliability of monitoring the ICP in a patient after craniectomy has been shown to be variable, at best....

Descripción completa

Detalles Bibliográficos
Autores principales: Ku, Andrew, Siddiqi, Imran, Desai, Shivum, Saied, Arman, Miulli, Dan E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626371/
https://www.ncbi.nlm.nih.gov/pubmed/36337800
http://dx.doi.org/10.7759/cureus.29828
Descripción
Sumario:Introduction Decompressive hemicraniectomies have been the mainstay of treating medically refractory elevated intracranial pressures (ICPs). Afterward, ICP continues to be monitored. However, the reliability of monitoring the ICP in a patient after craniectomy has been shown to be variable, at best. We propose the use of a durometer to investigate a temporal relationship between skin turgor and elevated ICP. Methods Patients were included via the following criteria: age >18 and unilateral decompressive craniectomy, with an external ventricular drain (EVD) in place. Patients were excluded if they were younger than 18, underwent bilateral decompressive craniectomy, or did not have an ICP monitor. Skin turgor over the skin flap was measured with a durometer over the center of the defect. ICPs were monitored using an EVD. The optic nerve sheath diameter (ONSD) was measured with ultrasound with the eye closed and Tegaderm (3M, Saint Paul, MN) covering the eyelid. The optic nerve was measured 3 mm behind the globe, and the diameter of the optic nerve at the widest point was recorded. The Neurological Pupil index (NPi) was recorded with a pupillometer. Results Fourteen patients were included, with over 100 data points for ICP, skin turgor, ONSD, and NPi. Five patients went on to have elevated ICP after decompressive hemicraniectomy. The correlation coefficient (R) for ONSD to ICP correlation was 0.62. The R for ICP to skin turgor was 0.31. The data shows that a skin turgor of >9 is related to increasing ICP within 24 hours, a skin turgor of 6-9 is a warning, and a skin turgor of <6 is normal. Conclusion A temporal relationship between skin turgor and ICP exists, which could be used to predict impending elevations in ICP sooner than an ICP monitor can determine. By using this in conjunction with traditional methods of evaluating these patients, we could sooner act on elevations in ICP and potentially improve outcomes.