Cargando…
Predicting walking-to-work using street-level imagery and deep learning in seven Canadian cities
New ‘big data’ streams such as street-level imagery are offering unprecedented possibilities for developing health-relevant data on the urban environment. Urban environmental features derived from street-level imagery have been used to assess pedestrian-friendly neighbourhood design and to predict a...
Autores principales: | Doiron, Dany, Setton, Eleanor M., Brook, Jeffrey R., Kestens, Yan, McCormack, Gavin R., Winters, Meghan, Shooshtari, Mahdi, Azami, Sajjad, Fuller, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626470/ https://www.ncbi.nlm.nih.gov/pubmed/36319661 http://dx.doi.org/10.1038/s41598-022-22630-1 |
Ejemplares similares
-
The Canadian Urban Environmental Health Research Consortium – a protocol for building a national environmental exposure data platform for integrated analyses of urban form and health
por: Brook, Jeffrey R., et al.
Publicado: (2018) -
Centralizing environmental datasets to support (inter)national chronic disease research: Values, challenges, and recommendations
por: Brook, Jeffrey R., et al.
Publicado: (2021) -
COVID-19 street reallocation in mid-sized Canadian cities: socio-spatial equity patterns
por: Fischer, Jaimy, et al.
Publicado: (2021) -
Associations between neighbourhood street connectivity and sedentary behaviours in Canadian adults: Findings from Alberta’s Tomorrow Project
por: Nichani, Vikram, et al.
Publicado: (2022) -
Using combined Global Position System and accelerometer data points to examine how built environments and gentrification are associated with physical activity in four Canadian cities
por: Firth, Caislin L., et al.
Publicado: (2022)