Cargando…

A separable convolutional neural network-based fast recognition method for AR-P300

Augmented reality-based brain–computer interface (AR–BCI) has a low signal-to-noise ratio (SNR) and high real-time requirements. Classical machine learning algorithms that improve the recognition accuracy through multiple averaging significantly affect the information transfer rate (ITR) of the AR–S...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Chunzhao, Du, Yulin, Zhao, Xincan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626510/
https://www.ncbi.nlm.nih.gov/pubmed/36337859
http://dx.doi.org/10.3389/fnhum.2022.986928
Descripción
Sumario:Augmented reality-based brain–computer interface (AR–BCI) has a low signal-to-noise ratio (SNR) and high real-time requirements. Classical machine learning algorithms that improve the recognition accuracy through multiple averaging significantly affect the information transfer rate (ITR) of the AR–SSVEP system. In this study, a fast recognition method based on a separable convolutional neural network (SepCNN) was developed for an AR-based P300 component (AR–P300). SepCNN achieved single extraction of AR–P300 features and improved the recognition speed. A nine-target AR–P300 single-stimulus paradigm was designed to be administered with AR holographic glasses to verify the effectiveness of SepCNN. Compared with four classical algorithms, SepCNN significantly improved the average target recognition accuracy (81.1%) and information transmission rate (57.90 bits/min) of AR–P300 single extraction. SepCNN with single extraction also attained better results than classical algorithms with multiple averaging.