Cargando…
A separable convolutional neural network-based fast recognition method for AR-P300
Augmented reality-based brain–computer interface (AR–BCI) has a low signal-to-noise ratio (SNR) and high real-time requirements. Classical machine learning algorithms that improve the recognition accuracy through multiple averaging significantly affect the information transfer rate (ITR) of the AR–S...
Autores principales: | He, Chunzhao, Du, Yulin, Zhao, Xincan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626510/ https://www.ncbi.nlm.nih.gov/pubmed/36337859 http://dx.doi.org/10.3389/fnhum.2022.986928 |
Ejemplares similares
-
A Lightweight Multi-Scale Convolutional Neural Network for P300 Decoding: Analysis of Training Strategies and Uncovering of Network Decision
por: Borra, Davide, et al.
Publicado: (2021) -
Decoding P300 Variability Using Convolutional Neural Networks
por: Solon, Amelia J., et al.
Publicado: (2019) -
Depression Speech Recognition With a Three-Dimensional Convolutional Network
por: Wang, Hongbo, et al.
Publicado: (2021) -
A Zero-Padding Frequency Domain Convolutional Neural Network for SSVEP Classification
por: Gao, Dongrui, et al.
Publicado: (2022) -
A P300-Detection Method Based on Logistic Regression and a Convolutional Neural Network
por: Li, Qi, et al.
Publicado: (2022)