Cargando…
Experimentally unsupervised deconvolution for light-sheet microscopy with propagation-invariant beams
Deconvolution is a challenging inverse problem, particularly in techniques that employ complex engineered point-spread functions, such as microscopy with propagation-invariant beams. Here, we present a deep-learning method for deconvolution that, in lieu of end-to-end training with ground truths, is...
Autores principales: | Wijesinghe, Philip, Corsetti, Stella, Chow, Darren J. X., Sakata, Shuzo, Dunning, Kylie R., Dholakia, Kishan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626625/ https://www.ncbi.nlm.nih.gov/pubmed/36319636 http://dx.doi.org/10.1038/s41377-022-00975-6 |
Ejemplares similares
-
Light-sheet microscopy with attenuation-compensated propagation-invariant beams
por: Nylk, Jonathan, et al.
Publicado: (2018) -
Does artificial intelligence have a role in the IVF clinic?
por: Chow, Darren J X, et al.
Publicado: (2021) -
Deconvolution of light sheet microscopy recordings
por: Becker, Klaus, et al.
Publicado: (2019) -
Light sheet microscopy with acoustic sample confinement
por: Yang, Zhengyi, et al.
Publicado: (2019) -
Investigation of refractive index dynamics during in vitro embryo development using off-axis digital holographic microscopy
por: Dwapanyin, George O., et al.
Publicado: (2023)