Cargando…
Unsupervised learning of aging principles from longitudinal data
Age is the leading risk factor for prevalent diseases and death. However, the relation between age-related physiological changes and lifespan is poorly understood. We combined analytical and machine learning tools to describe the aging process in large sets of longitudinal measurements. Assuming tha...
Autores principales: | Avchaciov, Konstantin, Antoch, Marina P., Andrianova, Ekaterina L., Tarkhov, Andrei E., Menshikov, Leonid I., Burmistrova, Olga, Gudkov, Andrei V., Fedichev, Peter O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626636/ https://www.ncbi.nlm.nih.gov/pubmed/36319638 http://dx.doi.org/10.1038/s41467-022-34051-9 |
Ejemplares similares
-
Longitudinal analysis of blood markers reveals progressive loss of resilience and predicts human lifespan limit
por: Pyrkov, Timothy V., et al.
Publicado: (2021) -
Quantitative characterization of biological age and frailty based on locomotor activity records
por: Pyrkov, Timothy V., et al.
Publicado: (2018) -
A universal transcriptomic signature of age reveals the temporal scaling of Caenorhabditis elegans aging trajectories
por: Tarkhov, Andrei E., et al.
Publicado: (2019) -
Extracting biological age from biomedical data via deep learning: too much of a good thing?
por: Pyrkov, Timothy V., et al.
Publicado: (2018) -
Hybrid quantum-classical machine learning for generative chemistry and drug design
por: Gircha, A. I., et al.
Publicado: (2023)