Cargando…
An interactive analysis of the mouse oviductal miRNA profiles
MicroRNAs are small non-coding molecules that control several cellular functions and act as negative post-transcriptional regulators of the mRNA. While their implication in several biological functions is already known, an important role as regulators of different physiological and pathological proc...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9627480/ https://www.ncbi.nlm.nih.gov/pubmed/36340025 http://dx.doi.org/10.3389/fcell.2022.1015360 |
_version_ | 1784822978591064064 |
---|---|
author | Taraschi, Angela Cimini, Costanza Colosimo, Alessia Ramal-Sanchez, Marina Valbonetti, Luca Bernabò, Nicola Barboni, Barbara |
author_facet | Taraschi, Angela Cimini, Costanza Colosimo, Alessia Ramal-Sanchez, Marina Valbonetti, Luca Bernabò, Nicola Barboni, Barbara |
author_sort | Taraschi, Angela |
collection | PubMed |
description | MicroRNAs are small non-coding molecules that control several cellular functions and act as negative post-transcriptional regulators of the mRNA. While their implication in several biological functions is already known, an important role as regulators of different physiological and pathological processes in fertilization and embryo development is currently emerging. Indeed, miRNAs have been found in the oviductal fluid packaged within the extracellular vesicles, which might act as natural nanoshuttles by transporting lipids, proteins, RNA molecules and miRNAs from the oviduct to the gametes or embryos. Here, an exhaustive bibliography search was carried out, followed by the construction of a computational model based on the networks theory in an attempt to recreate and elucidate the pathways potentially activated by the oviductal miRNA. The omics data published to date were gathered to create the Oviductal MiRNome, in which the miRNA target genes and their interactions are represented by using stringApp and the Network analyzer from Cytoscape 3.7.2. Then, the hyperlinked nodes were identified to investigate the pathways in which they are involved using the gene ontology enrichment analysis. To study the phenotypical effects after the removal of key genes on the reproductive system and embryo, knockout mouse lines for every protein-coding gene were investigated by using the International Mouse Phenotyping Consortium database. The creation of the Oviductal MiRNome revealed the presence of important genes and their interactions within the network. The functional enrichment analysis revealed that the hyperlinked nodes are involved in fundamental cellular functions, both structural and regulatory/signaling, suggesting their implication in fertilization and early embryo development. This fact was as well evidenced by the effects of the gene deletion in KO mice on the reproductive system and embryo development. The present study highlights the importance of studying the miRNA profiles and their enormous potential as tools to improve the assisted reproductive techniques currently used in human and animal reproduction. |
format | Online Article Text |
id | pubmed-9627480 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96274802022-11-03 An interactive analysis of the mouse oviductal miRNA profiles Taraschi, Angela Cimini, Costanza Colosimo, Alessia Ramal-Sanchez, Marina Valbonetti, Luca Bernabò, Nicola Barboni, Barbara Front Cell Dev Biol Cell and Developmental Biology MicroRNAs are small non-coding molecules that control several cellular functions and act as negative post-transcriptional regulators of the mRNA. While their implication in several biological functions is already known, an important role as regulators of different physiological and pathological processes in fertilization and embryo development is currently emerging. Indeed, miRNAs have been found in the oviductal fluid packaged within the extracellular vesicles, which might act as natural nanoshuttles by transporting lipids, proteins, RNA molecules and miRNAs from the oviduct to the gametes or embryos. Here, an exhaustive bibliography search was carried out, followed by the construction of a computational model based on the networks theory in an attempt to recreate and elucidate the pathways potentially activated by the oviductal miRNA. The omics data published to date were gathered to create the Oviductal MiRNome, in which the miRNA target genes and their interactions are represented by using stringApp and the Network analyzer from Cytoscape 3.7.2. Then, the hyperlinked nodes were identified to investigate the pathways in which they are involved using the gene ontology enrichment analysis. To study the phenotypical effects after the removal of key genes on the reproductive system and embryo, knockout mouse lines for every protein-coding gene were investigated by using the International Mouse Phenotyping Consortium database. The creation of the Oviductal MiRNome revealed the presence of important genes and their interactions within the network. The functional enrichment analysis revealed that the hyperlinked nodes are involved in fundamental cellular functions, both structural and regulatory/signaling, suggesting their implication in fertilization and early embryo development. This fact was as well evidenced by the effects of the gene deletion in KO mice on the reproductive system and embryo development. The present study highlights the importance of studying the miRNA profiles and their enormous potential as tools to improve the assisted reproductive techniques currently used in human and animal reproduction. Frontiers Media S.A. 2022-10-19 /pmc/articles/PMC9627480/ /pubmed/36340025 http://dx.doi.org/10.3389/fcell.2022.1015360 Text en Copyright © 2022 Taraschi, Cimini, Colosimo, Ramal-Sanchez, Valbonetti, Bernabò and Barboni. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cell and Developmental Biology Taraschi, Angela Cimini, Costanza Colosimo, Alessia Ramal-Sanchez, Marina Valbonetti, Luca Bernabò, Nicola Barboni, Barbara An interactive analysis of the mouse oviductal miRNA profiles |
title | An interactive analysis of the mouse oviductal miRNA profiles |
title_full | An interactive analysis of the mouse oviductal miRNA profiles |
title_fullStr | An interactive analysis of the mouse oviductal miRNA profiles |
title_full_unstemmed | An interactive analysis of the mouse oviductal miRNA profiles |
title_short | An interactive analysis of the mouse oviductal miRNA profiles |
title_sort | interactive analysis of the mouse oviductal mirna profiles |
topic | Cell and Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9627480/ https://www.ncbi.nlm.nih.gov/pubmed/36340025 http://dx.doi.org/10.3389/fcell.2022.1015360 |
work_keys_str_mv | AT taraschiangela aninteractiveanalysisofthemouseoviductalmirnaprofiles AT ciminicostanza aninteractiveanalysisofthemouseoviductalmirnaprofiles AT colosimoalessia aninteractiveanalysisofthemouseoviductalmirnaprofiles AT ramalsanchezmarina aninteractiveanalysisofthemouseoviductalmirnaprofiles AT valbonettiluca aninteractiveanalysisofthemouseoviductalmirnaprofiles AT bernabonicola aninteractiveanalysisofthemouseoviductalmirnaprofiles AT barbonibarbara aninteractiveanalysisofthemouseoviductalmirnaprofiles AT taraschiangela interactiveanalysisofthemouseoviductalmirnaprofiles AT ciminicostanza interactiveanalysisofthemouseoviductalmirnaprofiles AT colosimoalessia interactiveanalysisofthemouseoviductalmirnaprofiles AT ramalsanchezmarina interactiveanalysisofthemouseoviductalmirnaprofiles AT valbonettiluca interactiveanalysisofthemouseoviductalmirnaprofiles AT bernabonicola interactiveanalysisofthemouseoviductalmirnaprofiles AT barbonibarbara interactiveanalysisofthemouseoviductalmirnaprofiles |