Cargando…
Enzyme–substrate interface targeting by imidazole‐based γ‐secretase modulators activates γ‐secretase and stabilizes its interaction with APP
Alzheimer's disease (AD) pathogenesis has been linked to the accumulation of longer, aggregation‐prone amyloid β (Aβ) peptides in the brain. Γ‐secretases generate Aβ peptides from the amyloid precursor protein (APP). Γ‐secretase modulators (GSMs) promote the generation of shorter, less‐amyloido...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9627667/ https://www.ncbi.nlm.nih.gov/pubmed/36121025 http://dx.doi.org/10.15252/embj.2022111084 |
Sumario: | Alzheimer's disease (AD) pathogenesis has been linked to the accumulation of longer, aggregation‐prone amyloid β (Aβ) peptides in the brain. Γ‐secretases generate Aβ peptides from the amyloid precursor protein (APP). Γ‐secretase modulators (GSMs) promote the generation of shorter, less‐amyloidogenic Aβs and have therapeutic potential. However, poorly defined drug–target interactions and mechanisms of action have hampered their therapeutic development. Here, we investigate the interactions between the imidazole‐based GSM and its target γ‐secretase—APP using experimental and in silico approaches. We map the GSM binding site to the enzyme–substrate interface, define a drug‐binding mode that is consistent with functional and structural data, and provide molecular insights into the underlying mechanisms of action. In this respect, our analyses show that occupancy of a γ‐secretase (sub)pocket, mediating binding of the modulator's imidazole moiety, is sufficient to trigger allosteric rearrangements in γ‐secretase as well as stabilize enzyme–substrate interactions. Together, these findings may facilitate the rational design of new modulators of γ‐secretase with improved pharmacological properties. |
---|