Cargando…
Photoplethysmography-Based Machine Learning Approaches for Atrial Fibrillation Prediction: A Report From the Huawei Heart Study
BACKGROUND: Current wearable devices enable the detection of atrial fibrillation (AF), but a machine learning (ML)–based approach may facilitate accurate prediction of AF onset. OBJECTIVES: The present study aimed to develop, optimize, and validate an ML-based model for real-time prediction of AF on...
Autores principales: | Guo, Yutao, Wang, Hao, Zhang, Hui, Liu, Tong, Li, Luping, Liu, Lingjie, Chen, Maolin, Chen, Yundai, Lip, Gregory Y.H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9627828/ https://www.ncbi.nlm.nih.gov/pubmed/36341222 http://dx.doi.org/10.1016/j.jacasi.2021.09.004 |
Ejemplares similares
-
Population-Based Screening or Targeted Screening Based on Initial Clinical Risk Assessment for Atrial Fibrillation: A Report from the Huawei Heart Study
por: Guo, Yutao, et al.
Publicado: (2020) -
Mobile Health for Cardiovascular Disease: The New Frontier for AF Management: Observations from the Huawei Heart Study and mAFA-II Randomised Trial
por: Guo, Yutao, et al.
Publicado: (2020) -
Role of Monocytes in Heart Failure and Atrial Fibrillation
por: Shahid, Farhan, et al.
Publicado: (2018) -
Atrial Fibrillation Better Care Pathway Adherent Care Improves Outcomes in Chinese Patients With Atrial Fibrillation
por: Guo, Yutao, et al.
Publicado: (2022) -
Management of atrial fibrillation
por: Kakar, Puneet, et al.
Publicado: (2007)